Holozoans Temporal range: | |
---|---|
Holozoan diversity. From top left corner: Capsaspora (Filasterea), Sphaeroforma (Ichthyosporea), Syssomonas (Pluriformea), Stephanoeca (Craspedida), Salpingoeca (Acanthoecida), Apis (Metazoa) | |
Scientific classification | |
Domain: | Eukaryota |
Clade: | Amorphea |
Clade: | Obazoa |
(unranked): | Opisthokonta |
(unranked): | Holozoa Lang et al., 2002 [1] |
Clades [2] | |
Incertae sedis | |
Synonyms | |
|
Holozoa (from Ancient Greek ὅλος (holos) 'whole'and ζῷον (zoion) 'animal') is a clade of organisms that includes animals and their closest single-celled relatives, but excludes fungi and all other organisms. Together they amount to more than 1.5 million species of purely heterotrophic organisms, including around 300 unicellular species. It consists of various subgroups, namely Metazoa (or animals) and the protists Choanoflagellata, Filasterea, Pluriformea and Ichthyosporea. Along with fungi and some other groups, Holozoa is part of the Opisthokonta, a supergroup of eukaryotes. Choanofila was previously used as the name for a group similar in composition to Holozoa, but its usage is discouraged now because it excludes animals and is therefore paraphyletic.
The holozoan protists play a crucial role in understanding the evolutionary steps leading to the emergence of multicellular animals from single-celled ancestors. Recent genomic studies have shed light on the evolutionary relationships between the various holozoan lineages, revealing insights into the origins of multicellularity. Some fossils of possible metazoans have been reinterpreted as holozoan protists.
Holozoa is a clade that includes animals and their closest relatives, as well as their common ancestor, but excludes fungi. It is defined on a branch-based approach as the clade encompassing all relatives of Homo sapiens (an animal), but not Neurospora crassa (a fungus). [2] Holozoa, besides animals, primarily comprises unicellular protist lineages of varied morphologies such as choanoflagellates, filastereans, ichthyosporeans, and the distinct genera Corallochytrium , Syssomonas , and Tunicaraptor . [6] [3]
The first sequenced unicellular holozoan genome was that of Monosiga brevicollis , a choanoflagellate. It measures around 41.6 mega–base-pairs (Mbp) and contains around 9200 coding genes, making it comparable in size to the genome of filamentous fungi. Animal genomes are usually larger (e.g. human genome, 2900 Mbp; fruit fly, 180 Mbp), with some exceptions. [15]
Holozoa, along with a clade that contains fungi and their protist relatives (Holomycota), are part of the larger supergroup of eukaryotes known as Opisthokonta. Holozoa diverged from their opisthokont ancestor around 1070 million years ago (Mya). [16] The choanoflagellates, animals and filastereans group together as the clade Filozoa. Within Filozoa, the choanoflagellates and animals group together as the clade Choanozoa. [13] Based on phylogenetic and phylogenomic analyses, the cladogram of Holozoa is shown below: [17] [18] [6] [3]
Opisthokonta |
| ||||||||||||||||||||||||||||||||||
1250 Mya |
Uncertainty remains around the relationship of the two most basal groups, Ichthyosporea and Pluriformea. [2] They may be sister to each other, forming the putative clade Teretosporea. [19] Alternatively, Ichthyosporea may be the earliest-branching of the two, while Pluriformea is sister to the Filozoa clade comprising filastereans, choanoflagellates and animals. This second outcome is more strongly supported after the discovery of Syssomonas . [3] [6]
The position of Tunicaraptor , the newest holozoan member, is still unresolved. Three different phylogenetic positions of Tunicaraptor have been obtained from analyses: as the sister group to Filasterea, as sister to Filozoa, or as the most basal group of all Holozoa. [3] [20]
Environmental DNA surveys of oceans have revealed new diverse lineages of Holozoa. Most of them nest within known groups, mainly Ichthyosporea and Choanoflagellata. However, one environmental clade does not nest within any known group and is a potential new holozoan lineage. It has been tentatively named MASHOL (for 'marine small Holozoa'). [21]
The quest to elucidate the evolutionary origins of animals from a unicellular ancestor requires an examination of the transition to multicellularity. In the absence of a fossil record documenting this evolution, insights into the unicellular ancestor of animals are obtained from the analysis of shared genes and genetic pathways between animals and their closest living unicellular relatives. The genetic content of these single-celled holozoans has revealed a significant discovery: many genetic characteristics previously thought as unique to animals can also be found in these unicellular relatives. This suggests that the origin of multicellular animals did not happen solely because of the appearance of new genes (i.e. innovation), but because of pre-existing genes that were adapted or utilized in new ways (i.e. co-option). [7] [6] For example:
Additionally, many biological processes seen in animals are already present in their unicellular relatives, such as sexual reproduction and gametogenesis in the choanoflagellate Salpingoeca rosetta and several types of multicellular differentiation. [7]
A billion-year-old freshwater microscopic fossil named Bicellum brasieri is possibly the earliest known holozoan. It shows two differentiated cell types or life cycle stages. It consists of a spherical ball of tightly packed cells (stereoblasts) enclosed in a single layer of elongated cells. There are also two populations of stereoblasts with mixed shapes, which have been interpreted as cellular migration to the periphery, a movement that could be explained by differential cell-cell adhesion. These occurrences are consistent with extant unicellular holozoans, which are known to form multicellular stages in complex life cycles. [4]
Proposed Ediacaran fossil "embryos" of early metazoans, discovered in the Doushantuo Formation, have been reinterpreted as non-animal protists within Holozoa. According to some authors, although they present possible embryonic cleavage, they lack metazoan synapomorphies such as tissue differentiation and nearby juveniles or adults. Instead, its development is comparable to the germination stage of non-animal holozoans. They possibly represent an evolutionary grade in which palintomic cleavage (i.e. rapid cell divisions without cytoplasmic growth in between, a characteristic of animal embryonic cleavage) [23] was the method of dispersal and propagation. [24]
Prior to 2002, a relationship between Choanoflagellata, Ichthyosporea and the animal-fungi divergence was considered on the basis of morphology and ultrastructure. Early phylogenetic analyses gave contradicting results, because the amount of available DNA sequences was insufficient to yield unambiguous results. The taxonomic uncertainty was such that, for example, some Ichthyosporea were traditionally treated as trichomycete fungi. [1]
Holozoa was first recognized as a clade in 2002 through a phylogenomic analysis by Franz Bernd Lang, Charles J. O'Kelly and other collaborators, as part of a paper published in the journal Current Biology . The study used complete mitochondrial genomes of a choanoflagellate ( Monosiga brevicollis ) and an ichthyosporean ( Amoebidium parasiticum ) to firmly resolve the position of Ichthyosporea as the sister group to Choanoflagellata+Metazoa. This clade was named Holozoa (from Ancient Greek ὅλος (holos) 'whole'and ζῷον (zoion) 'animal'), meaning 'whole animal', referencing the wider animal ancestry that it contains. [1]
Holozoa has since been supported as a robust clade by every posterior analysis, [20] even after the discovery of more taxa nested within it (namely Filasterea since 2008, [13] and the pluriformean species Corallochytrium and Syssomonas since 2014 [25] and 2017 [6] respectively). As of 2019, the clade is accepted by the International Society of Protistologists, which revises the classification of eukaryotes. [2]
In classifications that use traditional taxonomic ranks (e.g. kingdom, phylum, class), all holozoan protists are classified as subphylum Choanofila (phylum Choanozoa, [a] kingdom Protozoa) while the animals are classified as a separate kingdom Metazoa or Animalia. [26] This classification excludes animals, even though they descend from the same common ancestor as choanofilan protists, making it a paraphyletic group rather than a true clade. Modern cladistic approaches to eukaryotic classification prioritise monophyletic groupings over traditional ranks, which are increasingly perceived as redundant and superfluous. Because Holozoa is a clade, its use is preferred over the paraphyletic taxon Choanofila. [2]
The choanoflagellates are a group of free-living unicellular and colonial flagellate eukaryotes considered to be the closest living relatives of the animals. Choanoflagellates are collared flagellates, having a funnel shaped collar of interconnected microvilli at the base of a flagellum. Choanoflagellates are capable of both asexual and sexual reproduction. They have a distinctive cell morphology characterized by an ovoid or spherical cell body 3–10 μm in diameter with a single apical flagellum surrounded by a collar of 30–40 microvilli. Movement of the flagellum creates water currents that can propel free-swimming choanoflagellates through the water column and trap bacteria and detritus against the collar of microvilli, where these foodstuffs are engulfed. This feeding provides a critical link within the global carbon cycle, linking trophic levels. In addition to their critical ecological roles, choanoflagellates are of particular interest to evolutionary biologists studying the origins of multicellularity in animals. As the closest living relatives of animals, choanoflagellates serve as a useful model for reconstructions of the last unicellular ancestor of animals. According to a 2021 study, crown group craspedids appeared 422.78 million years ago, Although a previous study from 2017 recovered the divergence of the crown group choanoflagellates (craspedids) at 786.62 million years.
The opisthokonts are a broad group of eukaryotes, including both the animal and fungus kingdoms. The opisthokonts, previously called the "Fungi/Metazoa group", are generally recognized as a clade. Opisthokonts together with Apusomonadida and Breviata comprise the larger clade Obazoa.
Amorphea is a taxonomic supergroup that includes the basal Amoebozoa and Obazoa. That latter contains the Opisthokonta, which includes the Fungi, Animals and the Choanomonada, or Choanoflagellates. The taxonomic affinities of the members of this clade were originally described and proposed by Thomas Cavalier-Smith in 2002.
The Ichthyosporea are a small group of Opisthokonta in Eukaryota, mostly parasites of fish and other animals.
The Archaeplastida are a major group of eukaryotes, comprising the photoautotrophic red algae (Rhodophyta), green algae, land plants, and the minor group glaucophytes. It also includes the non-photosynthetic lineage Rhodelphidia, a predatorial (eukaryotrophic) flagellate that is sister to the Rhodophyta, and probably the microscopic picozoans. The Archaeplastida have chloroplasts that are surrounded by two membranes, suggesting that they were acquired directly through a single endosymbiosis event by phagocytosis of a cyanobacterium. All other groups which have chloroplasts, besides the amoeboid genus Paulinella, have chloroplasts surrounded by three or four membranes, suggesting they were acquired secondarily from red or green algae. Unlike red and green algae, glaucophytes have never been involved in secondary endosymbiosis events.
Capsaspora is a monotypic genus containing the single species Capsaspora owczarzaki. C. owczarzaki is a single-celled eukaryote that occupies a key phylogenetic position in our understanding of the origin of animal multicellularity, as one of the closest unicellular relatives to animals. It is, together with Ministeria vibrans, a member of the Filasterea clade. This amoeboid protist has been pivotal to unraveling the nature of the unicellular ancestor of animals, which has been proved to be much more complex than previously thought.
Ministeria vibrans is a bacterivorous amoeba with filopodia that was originally described to be suspended by a flagellum-like stalk attached to the substrate. Molecular and experimental work later on demonstrated the stalk is indeed a flagellar apparatus.
Corallochytrium belongs to the class of Corallochytrea within Teretosporea and is a sister group to Ichthyosporea. Corallochytrium limacisporum is the only species of Corallochytrium known so far. It was first discovered and named in the Arabian Sea’s coral lagoons by Kaghu-Kumar in 1987. It was first thought to be a member of the fungi-like thraustochytrids, however, this was later disproven due to Corallochytriums lack of cilia and sagenogenetosome. Little research has been done on the life cycle or morphology. Most research concerning this genus has been done to uncover the evolution of animals and fungi, as Corallochytrium possess both animal and fungal enzymatic trademarks.
Filasterea is a proposed basal Filozoan clade of single-celled ameboid eukaryotes that includes Ministeria and Capsaspora. It is a sister clade to the Choanozoa in which the Choanoflagellatea and Animals appeared, originally proposed by Shalchian-Tabrizi et al. in 2008, based on a phylogenomic analysis with 78 genes. Filasterea was found to be the sister-group to the clade composed of Metazoa and Choanoflagellata within the Opisthokonta, a finding that has been further corroborated with additional, more taxon-rich, phylogenetic analyses.
The apusomonads are a group of protozoan zooflagellates that glide on surfaces, and mostly consume prokaryotes. They are of particular evolutionary interest because they appear to be the sister group to the Opisthokonts, the clade that includes both animals and fungi. Together with the Breviatea, these form the Obazoa clade.
The Filozoa are a monophyletic grouping within the Opisthokonta. They include animals and their nearest unicellular relatives.
Holomycota or Nucletmycea are a basal Opisthokont clade as sister of the Holozoa. It consists of the Cristidiscoidea and the kingdom Fungi. The position of nucleariids, unicellular free-living phagotrophic amoebae, as the earliest lineage of Holomycota suggests that animals and fungi independently acquired complex multicellularity from a common unicellular ancestor and that the osmotrophic lifestyle was originated later in the divergence of this eukaryotic lineage. Opisthosporidians is a recently proposed taxonomic group that includes aphelids, Microsporidia and Cryptomycota, three groups of endoparasites.
Until the late 1950s, the Precambrian was not believed to have hosted multicellular organisms. However, with radiometric dating techniques, it has been found that fossils initially found in the Ediacara Hills in Southern Australia date back to the late Precambrian. These fossils are body impressions of organisms shaped like disks, fronds and some with ribbon patterns that were most likely tentacles.
Choanozoa is a clade of opisthokont eukaryotes consisting of the choanoflagellates (Choanoflagellatea) and the animals. The sister-group relationship between the choanoflagellates and animals has important implications for the origin of the animals. The clade was identified in 2015 by Graham Budd and Sören Jensen, who used the name Apoikozoa. The 2018 revision of the classification first proposed by the International Society of Protistologists in 2012 recommends the use of the name Choanozoa.
Abeoforma whisleri is a single-celled eukaryote that belongs to the Ichthyosporea, a group of protists closely related to animals.
Pirum gemmata is a unicellular eukaryote that belongs to the Ichthyosporea clade, a group of protists closely related to animals. P. gemmata was isolated from the gut contents of a marine invertebrate, specifically the detritivorous peanut worm Phascolosoma agassizii.
Pluriformea is a proposed sibling clade of the Filozoa, and consists of Syssomonas multiformis and the Corallochytrea. Together with the Ichthyosporea and the Filozoa, they form the Holozoa.
Tunicaraptor is a genus of marine microbial protists containing the single species Tunicaraptor unikontum, discovered in 2020 from marine waters of Chile. It is a lineage of predatorial flagellates closely related to animals. It has a rare feeding structure not seen in other opisthokonts.
Syssomonas is a monotypic genus of unicellular flagellated protists containing the species Syssomonas multiformis. It is a member of Pluriformea inside the lineage of Holozoa, a clade containing animals and their closest protistan relatives. It lives in freshwater habitats. It has a complex life cycle that includes unicellular amoeboid and flagellated phases, as well as multicellular aggregates, depending on the growth medium and nutritional state.
An amoeboflagellate is any eukaryotic organism capable of behaving as an amoeba and as a flagellate at some point during their life cycle. Amoeboflagellates present both pseudopodia and at least one flagellum, often simultaneously.