Buxtehudeidae

Last updated

Buxtehudeidae
Scientific classification
Kingdom:
Phylum:
Order:
Family:
Buxtehudeidae

Larsson (1980)

Buxtehudeidae is a family of microsporidian fungi. It contains two species in two genera, Buxtehudea scaniae and Jiroveciana limnodrili . [1] Both genera are parasitic: [2] Buxtehudea infects archaeognath bristletails, while Jiroveciana infects tubifex worms. [3]

Related Research Articles

<span class="mw-page-title-main">Opisthokont</span> Group of eukaryotes which includes animals and fungi, among other groups

The opisthokonts are a broad group of eukaryotes, including both the animal and fungus kingdoms. The opisthokonts, previously called the "Fungi/Metazoa group", are generally recognized as a clade. Opisthokonts together with Apusomonadida and Breviata comprise the larger clade Obazoa.

Nosema apis is a microsporidian, a small, unicellular parasite recently reclassified as a fungus that mainly affects honey bees. It causes nosemosis, also called nosema, which is the most common and widespread of adult honey bee diseases. The dormant stage of N. apis is a long-lived spore which is resistant to temperature extremes and dehydration, and cannot be killed by freezing the contaminated comb. Nosemosis is a listed disease with the Office International des Epizooties (OIE).

<span class="mw-page-title-main">Microsporidia</span> Phylum of fungi

Microsporidia are a group of spore-forming unicellular parasites. These spores contain an extrusion apparatus that has a coiled polar tube ending in an anchoring disc at the apical part of the spore. They were once considered protozoans or protists, but are now known to be fungi, or a sister group to fungi. These fungal microbes are obligate eukaryotic parasites that use a unique mechanism to infect host cells. They have recently been discovered in a 2017 Cornell study to infect Coleoptera on a large scale. So far, about 1500 of the probably more than one million species are named. Microsporidia are restricted to animal hosts, and all major groups of animals host microsporidia. Most infect insects, but they are also responsible for common diseases of crustaceans and fish. The named species of microsporidia usually infect one host species or a group of closely related taxa. Approximately 10 percent of the species are parasites of vertebrates —several species, most of which are opportunistic, can infect humans, in whom they can cause microsporidiosis.

<span class="mw-page-title-main">Hypocreales</span> Order of fungi

The Hypocreales are an order of fungi within the class Sordariomycetes. In 2008, it was estimated that it contained some 237 genera, and 2647 species in seven families. Since then, a considerable number of further taxa have been identified, including an additional family, the Stachybotryaceae. Wijayawardene et al. in 2020 added more families and genera to the order. According to the Catalog of Life, As of April 2021 the Hypocreales contains 6 families, 137 genera, and 1411 species. Hyde et al. (2020a) listed 14 families under Hypocreales, while, Wijayawardene et al. (2022) accepted 15 families in the order, where Cylindriaceae was additionally added. Earlier, Hyde et al. (2020a) had placed Cylindriaceae in class Xylariomycetidae. Samarakoon et al. (2022) agreed. Hence, Cylindriaceae should have been excluded from Hypocreales and placed in Xylariomycetidae. Xiao et al. (2022) recently introduced a new family Polycephalomycetaceae to Hypocreales.

Microsporidiosis is an opportunistic intestinal infection that causes diarrhea and wasting in immunocompromised individuals. It results from different species of microsporidia, a group of microbial (unicellular) fungi.

<span class="mw-page-title-main">Xenoma</span> Growth caused by various species of protists and fungi

A xenoma is a growth caused by various protists and fungi, most notably microsporidia. It can occur on numerous organisms; however is predominantly found on fish.

<span class="mw-page-title-main">Nosematidae</span>

The Nosematidae are a family of microsporidians from the order Nosematida known for parasitizing insects.

Glugea is a genus of microsporidian parasites, predominantly infecting fish.

<span class="mw-page-title-main">Sordariomycetidae</span> Subclass of sac fungi

Sordariomycetidae is a subclass of sac fungi.

<span class="mw-page-title-main">Botryosphaeriales</span> Order of fungi

The Botryosphaeriales are an order of sac fungi (Ascomycetes), placed under class Dothideomycetes. Some species are parasites, causing leaf spot, plant rot, die-back or cankers, but they can also be saprophytes or endophytes. They occur world-wide on many hosts. For example, in China, infections related to Botryosphaeriales have been recorded on numerous hosts such as grapes, Caragana arborescens,Cercis chinensis, Eucalyptus, Chinese hackberry, blueberry, forest trees, and various other woody hosts.

Encephalitozoon intestinalis is a parasite. It can cause microsporidiosis.

The microsporidian Cucumispora dikerogammari is a parasitic fungal species that infects the invasive amphipod Dikerogammarus villosus. The first recorded evidence of Cucumispora dikerogammari was, as cited by Ovcharenko and Vita, in Germany, circa 1895, by Dr. L. Pfeiffer in the Dnieper Estuary. The Dnieper Estuary and lower parts of the Danube River are considered to be the parasite’s native range. As its host, D. villosus, began to invade novel habitats, C. dikerogammari followed, and has now expanded its range to be found in many of the main bodies of water in Central and Western Europe. At this time, only limited research has been conducted regarding the ecological implications of C. dikerogammari spreading beyond its native range. However, there is evidence to suggest that C. dikerogammari may cause imbalance to the male/female sex ratio of its host D. villosus.

<i>Hamiltosporidium</i> Genus of fungi

Hamiltosporidium is a genus of Microsporidia, which are intracellular and unicellular parasites. The genus, proposed by Haag et al. in 2010, contains two species; Hamiltosporidium tvaerminnensis, and Hamiltosporidium magnivora. Both species infect only the crustacean Daphnia magna (Waterflea).

Nematocida parisii is a parasitic species of Microsporidia fungi found in wild isolates of the common nematode, Caenorhabditis elegans. The fungus forms spores and replicates in the intestines before leaving the host.

<span class="mw-page-title-main">Opisthosporidia</span> Clade of fungi

Opisthosporidia is a superphylum of intracellular parasites with amoeboid vegetative stage, defined as a common group of eukaryotic groups Microsporidia, Cryptomycota and Aphelidea. They have been considered to represent a monophyletic lineage with shared ecological and structural features, being a sister clade of the Fungi. Together with the Fungi they represent a sister clade of the Cristidiscoidea, together forming the Holomycota.

<i>Enterospora nucleophila</i> Species of parasitic protist

Enterospora nucleophila is a microsporidian infecting the gilt-head bream. It develops primarily within the nuclei of rodlet cells and enterocytes, at the intestinal epithelium. It can also be found in cytoplasmic position within other cell types, including phagocytes, at subepithelial layers. It is the causative agent of emaciative microsporidiosis of gilthead sea bream, a chronic condition manifested as a severe growth arrestment, normally accompanied by trickling mortality.

<span class="mw-page-title-main">Lecideales</span> Order of lichenized fungi in the class Lecaoromycetes

The Lecideales are an order of lichenized fungi in the class Lecanoromycetes. The order contains two families: the Lecideaceae, which contains 29 genera and about 260 species, and Lopadiaceae, which contains the single genus Lopadium of 10 species.

Hazardia is a genus of microsporidians that parasite insects, with the type host being Culex pipiens. It is currently classified as incertae sedis within the order Amblyosporida of phylum Rozellomycota.

Chytridiopsida is an order of microsporidians in the monotypic class Chytridiopsidea.

References

  1. Wijayawardene NN, Hyde KD, Al-Ani LK, Tedersoo L, Haelewaters D, Rajeshkumar KC, et al. (2020). "Outline of Fungi and fungus-like taxa" (PDF). Mycosphere. 11 (1): 1060–1456. doi: 10.5943/mycosphere/11/1/8 . ISSN   2077-7019.
  2. Weiss, Louis M.; Becnel, James J. (2014). Microsporidia: Pathogens of Opportunity (1 ed.). John Wiley & Sons, Inc. ISBN   978-1-118-39522-6.
  3. Corsaro, Daniele; Wylezich, Claudia; Venditti, Danielle; Michel, Rolf; Walochnik, Julia; Wegensteiner, Rudolf (2018). "Filling gaps in the microsporidian tree: rDNA phylogeny of Chytridiopsis typographi (Microsporidia: Chytridiopsida)". Parasitology Research. doi:10.1007/s00436-018-6130-1.