Filasterea

Last updated

Filasterea
Capsaspora owczarzaki.jpeg
Capsaspora owczarzaki
Scientific classification
Domain:
(unranked):
(unranked):
(unranked):
Class:
Filasterea

Salchian-Tabrizi, 2008
Families and Genera

Filasterea is a proposed basal Filozoan clade of single-celled ameboid eukaryotes that includes Ministeria and Capsaspora . [1] It is a sister clade to the Choanozoa in which the Choanoflagellatea and Animals appeared, originally proposed by Shalchian-Tabrizi et al. in 2008, based on a phylogenomic analysis with dozens of genes. Filasterea was found to be the sister-group to the clade composed of Metazoa and Choanoflagellata within the Opisthokonta, a finding that has been further corroborated with additional, more taxon-rich, phylogenetic analyses. [2] [3] [4]

Contents

Etymology

From Latin filum meaning "thread" and Greek aster meaning "star", it indicates the main morphological features shared by all their integrants: small, rounded amoeboids with a mononucleated cellular body, covered in long and radiating cell protrusions known as filopodia. These filopodia may be involved in substrate adhesion and capture of prey.

Applications

There are currently cultures from two filasterean species: Capsaspora owczarzaki and Ministeria vibrans, the first isolated from within a fresh-water snail, the second a marine, free-living bacteriovore. The complete genome sequence of C. owczarzaki has been obtained [5] and the genome sequence of M. vibrans is being sequenced. Comparative analyses have shown that Filasterea are key to unravel the genetic repertoire of the unicellular ancestor of animals and to provide insights into the origin of Metazoa. Metabarcoding analyses of 18S ribosomal RNA in marine environments have failed to recover other filasterean representatives, [6] [7] suggesting this clade may not be especially abundant in natural ecosystems.

Taxonomy

Opisthokonta   
Holomycota
Zoosporia

Fungi Asco1013.jpg

Opisthosporidia Fibrillanosema spore.jpg

Cristidiscoidea

Nucleariida Nuclearia sp Nikko.jpg

Fonticulida

Holozoa

Ichthyosporea Abeoforma whisleri-2.jpg

Pluriformea

Syssomonas

Corallochytrium Corallochytrium limacisporum.png

Filozoa
Filasterea

Ministeria Ministeria vibrans.jpeg

Capsaspora

Pigoraptor

Choanozoa

Choanoflagellatea Desmarella moniliformis.jpg

Animalia Comb jelly.jpg

In some research Capsaspora is found to be more closely related to Choanozoa than Ministeria. [12]

Related Research Articles

<span class="mw-page-title-main">Opisthokont</span> Group of eukaryotes which includes animals and fungi, among other groups

The opisthokonts are a broad group of eukaryotes, including both the animal and fungus kingdoms. The opisthokonts, previously called the "Fungi/Metazoa group", are generally recognized as a clade. Opisthokonts together with Apusomonadida and Breviata comprise the larger clade Obazoa.

<span class="mw-page-title-main">Bikont</span> Group of eukaryotes

A bikont is any of the eukaryotic organisms classified in the group Bikonta. Many single-celled and multi-celled organisms are members of the group, and these, as well as the presumed ancestor, have two flagella.

<span class="mw-page-title-main">Cristidiscoidea</span> Proposed basal holomycota clade

Cristidiscoidea or Nucleariae is a proposed basal holomycota clade in which Fonticula and Nucleariida emerged, as sister of the fungi. Since it is close to the divergence between the main lineages of fungi and animals, the study of Cristidiscoidea can provide crucial information on the divergent lifestyles of these groups and the evolution of opisthokonts and slime mold multicellularity. The holomycota tree is following Tedersoo et al.

<span class="mw-page-title-main">Apusozoa</span> Phylum of micro-organisms

The Apusozoa are a paraphyletic phylum of flagellate eukaryotes. They are usually around 5–20 μm in size, and occur in soils and aquatic habitats, where they feed on bacteria. They are grouped together based on the presence of an organic shell or theca under the dorsal surface of the cell.

<span class="mw-page-title-main">Telonemia</span> Phylum of single-celled organisms

Telonemia is a phylum of microscopic eukaryotes commonly known as telonemids. They are unicellular free-living flagellates with a unique combination of cell structures, including a highly complex cytoskeleton unseen in other eukaryotes.

<i>Capsaspora</i> Single-celled eukaryote genus

Capsaspora is a monotypic genus containing the single species Capsaspora owczarzaki. C. owczarzaki is a single-celled eukaryote that occupies a key phylogenetic position in our understanding of the origin of animal multicellularity, as one of the closest unicellular relatives to animals. It is, together with Ministeria vibrans, a member of the Filasterea clade. This amoeboid protist has been pivotal to unravel the nature of the unicellular ancestor of animals, which has been proved to be much more complex than previously thought.

<i>Ministeria vibrans</i> Species of amoeba

Ministeria vibrans is a bacterivorous amoeba with filopodia that was originally described to be suspended by a flagellum-like stalk attached to the substrate. Molecular and experimental work later on demonstrated the stalk is indeed a flagellar apparatus.

<span class="mw-page-title-main">Hacrobia</span> Group of algae

The cryptomonads-haptophytes assemblage is a proposed but disputed monophyletic grouping of unicellular eukaryotes that are not included in the SAR supergroup. Several alternative names have been used for the group, including Hacrobia ; CCTH ; and "Eukaryomonadae".

<span class="mw-page-title-main">Holozoa</span> Clade containing animals and some protists

Holozoa is a clade of organisms that includes animals and their closest single-celled relatives, but excludes fungi and all other organisms. Together they amount to more than 1.5 million species of purely heterotrophic organisms, including around 300 unicellular species. It consists of various subgroups, namely Metazoa and the protists Choanoflagellata, Filasterea, Pluriformea and Ichthyosporea. Along with fungi and some other groups, Holozoa is part of the Opisthokonta, a supergroup of eukaryotes. Choanofila was previously used as the name for a group similar in composition to Holozoa, but its usage is discouraged now because it excludes animals and is therefore paraphyletic.

<span class="mw-page-title-main">Diaphoretickes</span> Taxon of eukaryotes

Diaphoretickes is a major group of eukaryotic organisms, with over 400,000 species. The majority of the earth's biomass that carries out photosynthesis belongs to Diaphoretickes.

<span class="mw-page-title-main">Filozoa</span> Monophyletic grouping within the Opisthokonta

The Filozoa are a monophyletic grouping within the Opisthokonta. They include animals and their nearest unicellular relatives.

<span class="mw-page-title-main">Holomycota</span> Clade containing fungi and some protists

Holomycota or Nucletmycea are a basal Opisthokont clade as sister of the Holozoa. It consists of the Cristidiscoidea and the kingdom Fungi. The position of nucleariids, unicellular free-living phagotrophic amoebae, as the earliest lineage of Holomycota suggests that animals and fungi independently acquired complex multicellularity from a common unicellular ancestor and that the osmotrophic lifestyle was originated later in the divergence of this eukaryotic lineage. Opisthosporidians is a recently proposed taxonomic group that includes aphelids, Microsporidia and Cryptomycota, three groups of endoparasites.

<span class="mw-page-title-main">Halvaria</span> Infrakingdom of protists

Halvaria is a taxonomic grouping of protists that includes Alveolata and Stramenopiles (Heterokonta).

<i>Ministeria</i> Genus of Filasterea

Ministeria is a genus of Filasterea. The species can be found in the North Atlantic Ocean and in British waters.

<span class="mw-page-title-main">Choanozoa</span> Clade of opisthokont eukaryotes consisting of the choanoflagellates and the animals

Choanozoa is a clade of opisthokont eukaryotes consisting of the choanoflagellates (Choanoflagellatea) and the animals. The sister-group relationship between the choanoflagellates and animals has important implications for the origin of the animals. The clade was identified in 2015 by Graham Budd and Sören Jensen, who used the name Apoikozoa. The 2018 revision of the classification first proposed by the International Society of Protistologists in 2012 recommends the use of the name Choanozoa.

<i>Creolimax fragrantissima</i> Species of protist

Creolimax fragrantissima is a single-celled protist that occupies a key phylogenetic position to understand the origin of animals. It was isolated from the digestive tract of some marine invertebrates, mainly from the peanut worm, collected from the Northeast Pacific.

Mantamonads are a group of free-living heterotrophic flagellates that move primarily by gliding on surfaces. They are classified as one genus Mantamonas in the monotypic family Mantamonadidae, order Mantamonadida and class Glissodiscea. Previously, they were classified in Apusozoa as sister of the Apusmonadida on the basis of rRNA analyses. However, mantamonads are currently placed in CRuMs on the basis of phylogenomic analyses that identify their closest relatives as the Diphylleida and Rigifilida.

<i>Parvularia atlantis</i> Species of amoeba

Parvularia atlantis is a filopodiated amoeba which was isolated from a lake in Atlanta and deposited in the American Type Culture Collection (ATCC) under the name Nuclearia sp. ATCC 50694 on 1997 by TK Sawyer. It was classified under the genus Nuclearia and morphologically resembles to Nuclearia species, although it is smaller. Later it was determined that it phylogenetically belongs to a new nucleariid lineage., distantly related to Nuclearia and Fonticula genera – the other two previously described nucleriid genera.

Tunicaraptor is a genus of marine microbial protists containing the single species Tunicaraptor unikontum, discovered in 2020 from marine waters of Chile. It is a lineage of predatorial flagellates closely related to animals. It has a rare feeding structure not seen in other opisthokonts.

<i>Syssomonas</i> Genus of protists

Syssomonas is a monotypic genus of unicellular flagellated protists containing the species Syssomonas multiformis. It is a member of Pluriformea inside the lineage of Holozoa, a clade containing animals and their closest protistan relatives. It lives in freshwater habitats. It has a complex life cycle that includes unicellular amoeboid and flagellated phases, as well as multicellular aggregates, depending on the growth medium and nutritional state.

References

  1. 1 2 3 Shalchian-Tabrizi K, Minge MA, Espelund M, et al. (7 May 2008). Aramayo R (ed.). "Multigene phylogeny of choanozoa and the origin of animals". PLOS ONE. 3 (5): e2098. Bibcode:2008PLoSO...3.2098S. doi: 10.1371/journal.pone.0002098 . PMC   2346548 . PMID   18461162.
  2. Torruella, Guifré; Derelle, Romain; Paps, Jordi; Lang, B. Franz; Roger, Andrew J.; Shalchian-Tabrizi, Kamran; Ruiz-Trillo, Iñaki (February 2012). "Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single-copy protein domains". Molecular Biology and Evolution. 29 (2): 531–544. doi:10.1093/molbev/msr185. ISSN   1537-1719. PMC   3350318 . PMID   21771718.
  3. Torruella, Guifré; de Mendoza, Alex; Grau-Bové, Xavier; Antó, Meritxell; Chaplin, Mark A.; del Campo, Javier; Eme, Laura; Pérez-Cordón, Gregorio; Whipps, Christopher M. (2015-09-21). "Phylogenomics Reveals Convergent Evolution of Lifestyles in Close Relatives of Animals and Fungi". Current Biology. 25 (18): 2404–2410. doi: 10.1016/j.cub.2015.07.053 . ISSN   1879-0445. PMID   26365255.
  4. 1 2 3 4 5 Hehenberger, Elisabeth; Tikhonenkov, Denis V.; Kolisko, Martin; Campo, Javier del; Esaulov, Anton S.; Mylnikov, Alexander P.; Keeling, Patrick J. (2017). "Novel Predators Reshape Holozoan Phylogeny and Reveal the Presence of a Two-Component Signaling System in the Ancestor of Animals". Current Biology. 27 (13): 2043–2050.e6. doi: 10.1016/j.cub.2017.06.006 . PMID   28648822.
  5. Suga, Hiroshi; Chen, Zehua; Mendoza, Alex de; Sebé-Pedrós, Arnau; Brown, Matthew W.; Kramer, Eric; Carr, Martin; Kerner, Pierre; Vervoort, Michel (2013-08-14). "The Capsaspora genome reveals a complex unicellular prehistory of animals". Nature Communications. 4: ncomms3325. Bibcode:2013NatCo...4.2325S. doi:10.1038/ncomms3325. PMC   3753549 . PMID   23942320.
  6. del Campo, Javier; Ruiz-Trillo, Iñaki (2013-04-01). "Environmental Survey Meta-analysis Reveals Hidden Diversity among Unicellular Opisthokonts". Molecular Biology and Evolution. 30 (4): 802–805. doi:10.1093/molbev/mst006. ISSN   0737-4038. PMC   3603316 . PMID   23329685.
  7. Del Campo, Javier; Mallo, Diego; Massana, Ramon; de Vargas, Colomban; Richards, Thomas A.; Ruiz-Trillo, Iñaki (September 2015). "Diversity and distribution of unicellular opisthokonts along the European coast analysed using high-throughput sequencing". Environmental Microbiology. 17 (9): 3195–3207. doi:10.1111/1462-2920.12759. ISSN   1462-2920. PMC   4500835 . PMID   25556908.
  8. Adl; et al. (28 September 2012), "The Revised Classification of Eukaryotes" (PDF), Journal of Eukaryotic Microbiology, 59 (5): 429–493, doi:10.1111/j.1550-7408.2012.00644.x, PMC   3483872 , PMID   23020233, archived from the original (PDF) on 2013-12-16
  9. Silar, Philippe (2016), "Protistes Eucaryotes : Origine, Evolution et Biologie des Microbes Eucaryotes", HAL Archives-ouvertes: 1–462
  10. Ondřej Zicha (1999), "Ministeria", BioLib.cz, retrieved 2016-04-21
  11. Ruggiero; et al. (29 April 2015), "A Higher Level Classification of All Living Organisms", PLOS ONE, 10 (4): e0119248, Bibcode:2015PLoSO..1019248R, doi: 10.1371/journal.pone.0119248 , PMC   4418965 , PMID   25923521
  12. Reynolds, Nicole K.; Smith, Matthew E.; Tretter, Eric D.; Gause, Justin; Heeney, Dustin; Cafaro, Matías J.; Smith, James F.; Novak, Stephen J.; Bourland, William A. (2017). "Resolving relationships at the animal-fungal divergence: A molecular phylogenetic study of the protist trichomycetes (Ichthyosporea, Eccrinida)". Molecular Phylogenetics and Evolution. 109: 447–464. doi: 10.1016/j.ympev.2017.02.007 . ISSN   1055-7903. PMID   28219758.