Nanohaloarchaea

Last updated

Nanohaloarchaea
Scientific classification
Domain:
Superphylum:
Phylum:
"Nanohaloarchaeota"
Class:
"Nanohaloarchaea"

(sic) Narasingarao et al. 2012
Genera
  • "Nanohalarchaeales"
  • "Nanohydrothermales"
  • "Nucleotidisoterales"
Synonyms
  • "Nanohalarchaeia" corrig. Narasingarao et al. 2012

Nanohaloarchaea is a clade of diminutive archaea with small genomes and limited metabolic capabilities, belonging to the DPANN archaea. They are ubiquitous in hypersaline habitats, which they share with the extremely halophilic haloarchaea.

Contents

Nanohaloarchaea were first identified from metagenomic data as a class of uncultivated halophilic archaea composed of 6 clades [1] [2] and were subsequently placed in the phylum Nanohaloarchaeota within the Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaeota (DPANN) superphylum. [3] However the phylogenetic position of nanohaloarchaea is still highly debated, being alternatively proposed as the sister-lineage of haloarchaea or a member of the DPANN super-phylum. [4] [5] [6]

The lineage has since been identified in data from a range of hypersaline environments including: Australian thalassohaline lake, [7] Spanish saltern, [8] Russian soda brine, [9] Californian saltern, [10] Chilean halite, [11] and Ethiopian Dallol hydrothermal system. [12]

Taxonomy

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) [13] and National Center for Biotechnology Information (NCBI). [14]

Phylogeny of Nanohalobiales [15] [16] [17]
"Nanoanaerosalinaceae"

"Candidatus Nanoanaerosalina"

"Nanohalalkaliarchaeaceae"

"Candidatus Nanohalalkaliarchaeum"

"Nanohalobiaceae"

"Candidatus Nanosalinicola"

"Candidatus Nanosalina"

"Candidatus Nanohalobium"

Phylum "Nanohalarchaeota" corrig. Rinke et al. 2013

References

  1. Narasingarao; et al. (2011). "De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities". ISME J. 6 (1): 81–93. doi:10.1038/ismej.2011.78. PMC   3246234 . PMID   21716304.
  2. Ghai, Rohit; Lejla Pašić; Ana Beatriz Fernandez; Ana-Belen Martin-Cuadrado; et al. (10 October 2011). "New Abundant Microbial Groups in Aquatic Hypersaline Environments". Scientific Reports. 1: 135. Bibcode:2011NatSR...1..135G. doi:10.1038/srep00135. PMC   3216616 . PMID   22355652.
  3. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu WT, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM, Hugenholtz P, Woyke T (July 25, 2013). "Insights into the phylogeny and coding potential of microbial dark matter". Nature. 499, 431–437 (2013) (7459): 431–437. Bibcode:2013Natur.499..431R. doi: 10.1038/nature12352 . hdl: 10453/27467 . PMID   23851394.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. Petitjean, C.; Deschamps, P.; López-García, P.; Moreira, D. (2014). "Rooting the domain Archaea by phylogenomic analysis supports the foundation of the new kingdom Proteoarchaeota". Genome Biol. Evol. 7 (1): 191–204. doi:10.1093/gbe/evu274. PMC   4316627 . PMID   25527841.
  5. Cavalier-Smith, Thomas; Chao, Ema E-Yung (2020). "Multidomain ribosomal protein trees and the planctobacterial origin of neomura (Eukaryotes, archaebacteria)". Protoplasma. 257 (3): 621–753. doi:10.1007/s00709-019-01442-7. PMC   7203096 . PMID   31900730.
  6. Monique Aouad, Najwa Taïb, Anne Oudart, Michel Lecocq, Manolo Gouy,Céline Brochier-Armanet (21 Apr 2018). "Extreme halophilic archaea derive from two distinct methanogen Class II lineages" (PDF). Molecular Phylogenetics and Evolution. 2018 (27). Elsevier: 46–54. Bibcode:2018MolPE.127...46A. doi:10.1016/j.ympev.2018.04.011. PMID   29684598. S2CID   25111200.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. Karen Andrade, Jörn Logemann, Karla B Heidelberg, Joanne B Emerson, Luis R Comolli, Laura A Hug, Alexander J Probst, Angus Keillar, Brian C Thomas, Christopher S Miller, Eric E Allen, John W Moreau, Jochen J Brocks & Jillian F Banfield (28 April 2015). "Metagenomic and lipid analyses reveal a diel cycle in a hypersaline microbial ecosystem". ISME J. ISME J 9, 2697–2711 (2015) (12): 2697–2711. Bibcode:2015ISMEJ...9.2697A. doi: 10.1038/ismej.2015.66 . PMC   4817636 . PMID   25918833.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. Rohit Ghai, Lejla Pašić, Ana Beatriz Fernández, Ana-Belen Martin-Cuadrado, Carolina Megumi Mizuno, Katherine D. McMahon, R. Thane Papke, Ramunas Stepanauskas, Beltran Rodriguez-Brito, Forest Rohwer, Cristina Sánchez-Porro, Antonio Ventosa & Francisco Rodríguez-Valera (31 October 2011). "New Abundant Microbial Groups in Aquatic Hypersaline Environments". Scientific Reports. 1 (Sci Rep 1, 135 (2011)): 135. Bibcode:2011NatSR...1E.135G. doi: 10.1038/srep00135 . PMC   3216616 . PMID   22355652.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. Vavourakis Charlotte D., Ghai Rohit, Rodriguez-Valera Francisco, Sorokin Dimitry Y., Tringe Susannah G., Hugenholtz Philip, Muyzer Gerard (25 February 2016). "Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines". Frontiers in Microbiology. 7: 211. doi: 10.3389/fmicb.2016.00211 . PMC   4766312 . PMID   26941731.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. Olga Zhaxybayeva 1 , Ramunas Stepanauskas, Nikhil Ram Mohan, R Thane Papke (29 January 2013). "Cell sorting analysis of geographically separated hypersaline environments". Extremophiles. 17, 2 (2013) (2): 265–275. doi:10.1007/s00792-013-0514-z. PMID   23358730. S2CID   5933801 . Retrieved 2 March 2021.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  11. Alexander Crits-Christoph Diego R. Gelsinger Bing Ma Jacek Wierzchos Jacques Ravel Alfonso Davila M. Cristina Casero Jocelyne DiRuggiero (21 March 2016). "Functional interactions of archaea, bacteria and viruses in a hypersaline endolithic community". Environmental Microbiology. 18 (2016 v.18 no.6): 2064–2077. Bibcode:2016EnvMi..18.2064C. doi:10.1111/1462-2920.13259. PMID   26914534 . Retrieved 2 March 2021.
  12. Gómez, Felipe; Cavalazzi, Barbara; Rodríguez, Nuria; Amils, Ricardo; Ori, Gian Gabriele; Olsson-Francis, Karen; Escudero, Cristina; Martínez, Jose M.; Miruts, Hagos (2019-05-27). "Ultra-small microorganisms in the polyextreme conditions of the Dallol volcano, Northern Afar, Ethiopia". Scientific Reports. 9 (1): 7907. Bibcode:2019NatSR...9.7907G. doi:10.1038/s41598-019-44440-8. ISSN   2045-2322. PMC   6536532 . PMID   31133675.
  13. J.P. Euzéby. "Phylum "Candidatus Nanohaloarchaeota"". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2011-11-17.
  14. Sayers; et al. "Nanohaloarchaea". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2011-06-05.
  15. "GTDB release 09-RS220". Genome Taxonomy Database . Retrieved 10 May 2024.
  16. "ar53_r220.sp_label". Genome Taxonomy Database . Retrieved 10 May 2024.
  17. "Taxon History". Genome Taxonomy Database . Retrieved 10 May 2024.
  18. La Cono; et al. (2020). "Symbiosis between nanohaloarchaeon and haloarchaeon is based on utilization of different polysaccharides". Proc Natl Acad Sci USA. 117 (33): 20223–20234. Bibcode:2020PNAS..11720223L. doi: 10.1073/pnas.2007232117 . PMC   7443923 . PMID   32759215.

Further reading