Thermoprotei | |
---|---|
Scientific classification | |
Domain: | Archaea |
Kingdom: | Proteoarchaeota |
Superphylum: | TACK group |
Phylum: | Thermoproteota |
Class: | Thermoprotei Reysenbach 2002 |
Orders | |
Synonyms | |
|
The Thermoprotei is a class of the Thermoproteota. [1]
The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) [2] and National Center for Biotechnology Information (NCBI). [3]
16S rRNA based LTP_06_2022 [4] [5] [6] | 53 marker proteins based GTDB 09-RS220 [7] [8] [9] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
The Thermoproteota are prokaryotes that have been classified as a phylum of the domain Archaea. Initially, the Thermoproteota were thought to be sulfur-dependent extremophiles but recent studies have identified characteristic Thermoproteota environmental rRNA indicating the organisms may be the most abundant archaea in the marine environment. Originally, they were separated from the other archaea based on rRNA sequences; other physiological features, such as lack of histones, have supported this division, although some crenarchaea were found to have histones. Until 2005 all cultured Thermoproteota had been thermophilic or hyperthermophilic organisms, some of which have the ability to grow at up to 113 °C. These organisms stain Gram negative and are morphologically diverse, having rod, cocci, filamentous and oddly-shaped cells. Recent evidence shows that some members of the Thermoproteota are methanogens.
In taxonomy, the Methanopyri are a class of the Euryarchaeota.
In taxonomy, the Thermoplasmata are a class of the Euryarchaeota.
Thermoplasmataceae is a family of archaeans in the order Thermoplasmatales. It contains only one genus, Thermoplasma. All species within Thermoplasmataceae are thermoacidophiles, and they grow at a temperature of 60 °C and pH 2. They were isolated from hydrothermal vents, fumaroles and similar environments.
In taxonomy, the Thermococci are a class of microbes within the Euryarchaeota.
In the taxonomy of microorganisms, the Methanomicrobia are a class of the Euryarchaeota.
Methanococci is a class of methanogenic archaea in the phylum Euryarchaeota. They can be mesophilic, thermophilic or hyperthermophilic.
Acidilobales are an order of archaea in the class Thermoprotei.
The Desulfurococcales is an order of the Thermoprotei, part of the kingdom Archaea. The order encompasses some genera which are all thermophilic, autotrophs which utilise chemical energy, typically by reducing sulfur compounds using hydrogen. Desulfurococcales cells are either regular or irregular coccus in shape, with forms of either discs or dishes. These cells can be single, in pairs, in short chains, or in aciniform formation.
Methanobacteriales is an order of archaeans in the class Methanobacteria. Species within this order differ from other methanogens in that they can use fewer catabolic substrates and have distinct morphological characteristics, lipid compositions, and RNA sequences. Their cell walls are composed of pseudomurein. Most species are Gram-positive with rod-shaped bodies and some can form long filaments. Most of them use formate to reduce carbon dioxide, but those of the genus Methanosphaera use hydrogen to reduce methanol to methane.
In taxonomy, the Methanococcales are an order of the Methanococci.
The Nitrosopumilales are an order of the Archaea class Nitrososphaeria.
Sulfolobales is an order of archaeans in the class Thermoprotei.
In taxonomy, the Ferroplasmaceae are a family of the Thermoplasmatales.
In taxonomy, the Methanocaldococcaceae are a family of microbes within the order Methanococcales. It contains two genera, the type genus Methanocaldococcus and Methanotorris. These species are coccoid in form, neutrophilic to slightly acidophilic, and predominantly motile, and they have a very short generation period, from 25 to 45 minutes under optimal conditions. They produce energy exclusively through the reduction of carbon dioxide with hydrogen. Some species have been found in marine hydrothermal vents.
In taxonomy, the Methanosarcinaceae are a family of the Methanosarcinales.
The Pyrodictiaceae are a family of disc-shaped anaerobic microorganisms belonging to the order Desulfurococcales, in the domain Archaea. Members of this family are distinguished from the other family (Desulfurococcaceae) in the order Desulfurococcales by having an optimal growth temperature above 100 °C, rather than below 100 °C.
Methanocaldococcus formerly known as Methanococcus is a genus of coccoid methanogen archaea. They are all mesophiles, except the thermophilic M. thermolithotrophicus and the hyperthermophilic M. jannaschii. The latter was discovered at the base of a “white smoker” chimney at 21°N on the East Pacific Rise and it was the first archaean genome to be completely sequenced, revealing many novel and eukaryote-like elements.
Aciduliprofundum is a genus of the Euryarchaeota.
In taxonomy, Methanohalophilus is a genus of the Methanosarcinaceae.