Methanobacteriales

Last updated

Methanobacteriales
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Archaea
Kingdom: Euryarchaeota
Class: Methanobacteria
Order: Methanobacteriales
Balch and Wolfe 1981
Families

Methanobacteriales is an order of archaeans in the class Methanobacteria. [1] Species within this order differ from other methanogens in that they can use fewer catabolic substrates and have distinct morphological characteristics, lipid compositions, and RNA sequences. [2] Their cell walls are composed of pseudomurein. Most species are Gram-positive with rod-shaped bodies and some can form long filaments. Most of them use formate to reduce carbon dioxide, but those of the genus Methanosphaera use hydrogen to reduce methanol to methane. [2]

Contents

Phylogeny

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) [3] and National Center for Biotechnology Information (NCBI). [1]

16S rRNA based LTP_06_2022 [4] [5] [6] 53 marker proteins based GTDB 08-RS214 [7] [8] [9]
Methanothermaceae

Methanothermus

Methanobacteriaceae

Methanothermobacter species-group 2

Methanothermobacter

Methanobacterium species-group 2

Methanobacterium

Methanosphaera

Methanobrevibacter

Methanothermaceae

Methanothermus

Methanothermobacteraceae_A

Methanothermobacter species-group 2

"Methanothermobacteraceae"

Methanothermobacter

Methanobacteriaceae

Methanobacterium alcaliphilum

Methanobrevibacter

Methanobacterium species-group 2

Methanosphaera

Methanobacterium

See also

Related Research Articles

Chrysiogenaceae is a family of bacteria.

The Thermoprotei is a class of the Thermoproteota.

<span class="mw-page-title-main">Thermoplasmatales</span> Order of archaea

In taxonomy, the Thermoplasmatales are an order of the Thermoplasmata. All are acidophiles, growing optimally at pH below 2. Picrophilus is currently the most acidophilic of all known organisms, being capable of growing at a pH of -0.06. Many of these organisms do not contain a cell wall, although this is not true in the case of Picrophilus. Most members of the Thermotoplasmata are thermophilic.

Methanococcus is a genus of coccoid methanogens of the family Methanococcaceae. They are all mesophiles, except the thermophilic M. thermolithotrophicus and the hyperthermophilic M. jannaschii. The latter was discovered at the base of a “white smoker” chimney at 21°N on the East Pacific Rise and it was the first archaeal genome to be completely sequenced, revealing many novel and eukaryote-like elements.

<span class="mw-page-title-main">Methanomicrobia</span> Class of archaea

In the taxonomy of microorganisms, the Methanomicrobia are a class of the Euryarchaeota.

<span class="mw-page-title-main">Acidilobales</span> Order of archaea

Acidilobales are an order of archaea in the class Thermoprotei.

<span class="mw-page-title-main">Desulfurococcales</span> Order of archaea

The Desulfurococcales are an order of the Thermoprotei, part of the kingdom Archaea. The order encompasses some genera which are all thermophilic, autotrophs which utilise chemical energy, typically by reducing sulfur compounds using hydrogen.

In taxonomy, the Methanococcales are an order of the Methanococci.

In the taxonomy of microorganisms, the Methanomicrobiales are an order of the Methanomicrobia. Methanomicrobiales are strictly carbon dioxide reducing methanogens, using hydrogen or formate as the reducing agent. As seen from the phylogenetic tree based on 'The All-Species Living Tree' Project the family Methanomicrobiaceae is highly polyphyletic within the Methanomicrobiales.

<span class="mw-page-title-main">Sulfolobales</span> Order of archaea

Sulfolobales is an order of archaeans in the class Thermoprotei.

<span class="mw-page-title-main">Thermococcales</span> Order of archaea

In taxonomy, the Thermococcales are an order of microbes within the Thermococci. The species within the Thermococcales are used in laboratories as model organisms. All these species are strict anaerobes and can ferment sugars as sources of carbon, but they also need elemental sulfur.

In taxonomy, the Methanocaldococcaceae are a family of microbes within the order Methanococcales. It contains two genera, the type genus Methanocaldococcus and Methanotorris. These species are coccoid in form, neutrophilic to slightly acidophilic, and predominantly motile, and they have a very short generation period, from 25 to 45 minutes under optimal conditions. They produce energy exclusively through the reduction of carbon dioxide with hydrogen. Some species have been found in marine hydrothermal vents.

In taxonomy, the Methanococcaceae are a family of the Methanococcales. These organisms produce methane from formate or through the reduction of carbon dioxide with hydrogen. They live in marshes and other coastal areas. Members of the genus Methanothermococcus have been found in deep-sea hydrothermal vents.

In taxonomy, the Methanocorpusculaceae are a family of microbes within the order Methanomicrobiales. It contains exactly one genus, Methanocorpusculum. The species within Methanocorpusculum were first isolated from anaerobic digesters and anaerobic wastewater treatment plants. In the wild, they prefer freshwater environments. Unlike many other methanogenic archaea, they do not require high temperatures or extreme salt concentrations to live and grow.

Methanomicrobiaceae are a family of archaea in the order the Methanomicrobiales.

<span class="mw-page-title-main">Methanosarcinaceae</span> Family of archaea

In taxonomy, the Methanosarcinaceae are a family of the Methanosarcinales.

<span class="mw-page-title-main">Sulfolobaceae</span> Family of archaea

Sulfolobaceae are a family of the Sulfolobales belonging to the domain Archaea. The family consists of several genera adapted to survive environmental niches with extreme temperature and low pH conditions.

Methanocaldococcus formerly known as Methanococcus is a genus of coccoid methanogen archaea. They are all mesophiles, except the thermophilic M. thermolithotrophicus and the hyperthermophilic M. jannaschii. The latter was discovered at the base of a “white smoker” chimney at 21°N on the East Pacific Rise and it was the first archaean genome to be completely sequenced, revealing many novel and eukaryote-like elements.

In taxonomy, Methanocorpusculum is a genus of microbes within the family Methanocorpusculaceae. The species within Methanocorpusculum were first isolated from biodisgester wastewater and activated sludge from anaerobic digestors. In nature, they live in freshwater environments. Unlike most other methanogenic archaea, they do not require high temperatures or extreme salt concentrations to live and grow.

Methanocalculus is a genus of the Methanomicrobiales, and is known to include methanogens.

References

  1. 1 2 Sayers; et al. "Methanobacteriales". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 23 February 2022.
  2. 1 2 Adam S. Bonin; David R. Boone (1979). "The Order Methanobacteriales". The Prokaryotes. Springer. 3: 231–243. doi:10.1007/0-387-30743-5_11. ISBN   978-0-387-30743-5.
  3. J.P. Euzéby. "Methanobacteriales". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 23 February 2022.
  4. "The LTP" . Retrieved 10 May 2023.
  5. "LTP_all tree in newick format" . Retrieved 10 May 2023.
  6. "LTP_06_2022 Release Notes" (PDF). Retrieved 10 May 2023.
  7. "GTDB release 08-RS214". Genome Taxonomy Database . Retrieved 10 May 2023.
  8. "ar53_r214.sp_label". Genome Taxonomy Database . Retrieved 10 May 2023.
  9. "Taxon History". Genome Taxonomy Database . Retrieved 10 May 2023.

Further reading

Scientific journals

Scientific books