Methanosphaera

Last updated

Methanosphaera
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Archaea
Kingdom: Euryarchaeota
Class: Methanobacteria
Order: Methanobacteriales
Family: Methanobacteriaceae
Genus: Methanosphaera
Miller and Wolin 1985
Type species
Methanosphaera stadtmanae
corrig. Miller & Wolin 1985
Species

Methanosphaera is a genus of microbes within the family Methanobacteriaceae. [1] It was distinguished from other genera within Methanobacteriaceae in 1985 on the basis of the oligonucleotide sequence of its 16S RNA. [2] Like other archaea within Methanobacteriaceae, those of Methanosphaera are methanogens, but while most use formate to reduce carbon dioxide, those of Methanosphaera use hydrogen to reduce methanol to methane. [3]

Contents

See also

Related Research Articles

<span class="mw-page-title-main">Archaeoglobaceae</span> Family of archaea

Archaeoglobaceae are a family of the Archaeoglobales. All known genera within the Archaeoglobaceae are hyperthermophilic and can be found near undersea hydrothermal vents. Archaeoglobaceae are the only family in the order Archaeoglobales, which is the only order in the class Archaeoglobi.

Methanopyrus is a genus of the Methanopyraceae.

<span class="mw-page-title-main">Thermoplasmata</span> Class of archaea

In taxonomy, the Thermoplasmata are a class of the Euryarchaeota.

<span class="mw-page-title-main">Thermoplasmatales</span> Order of archaea

In taxonomy, the Thermoplasmatales are an order of the Thermoplasmata. All are acidophiles, growing optimally at pH below 2. Picrophilus is currently the most acidophilic of all known organisms, being capable of growing at a pH of -0.06. Many of these organisms do not contain a cell wall, although this is not true in the case of Picrophilus. Most members of the Thermotoplasmata are thermophilic.

Methanosarcina acetivorans is a versatile methane producing microbe which is found in such diverse environments as oil wells, trash dumps, deep-sea hydrothermal vents, and oxygen-depleted sediments beneath kelp beds. Only M. acetivorans and microbes in the genus Methanosarcina use all three known metabolic pathways for methanogenesis. Methanosarcinides, including M. acetivorans, are also the only archaea capable of forming multicellular colonies, and even show cellular differentiation. The genome of M. acetivorans is one of the largest archaeal genomes ever sequenced. Furthermore, one strain of M. acetivorans, M. a. C2A, has been identified to possess an F-type ATPase along with an A-type ATPase.

<span class="mw-page-title-main">Methanobacteria</span> Class of archaea

Methanobacteria is a class of archaeans in the kingdom Euryarchaeota. Several of the classes of the Euryarchaeota are methanogens and the Methanobacteria are one of these classes.

<span class="mw-page-title-main">Methanococci</span> Class of archaea

Methanococci is a class of methanogenic archaea in the phylum Euryarchaeota. They can be mesophilic, thermophilic or hyperthermophilic.

<span class="mw-page-title-main">Desulfurococcales</span> Order of archaea

The Desulfurococcales are an order of the Thermoprotei, part of the kingdom Archaea. The order encompasses some genera which are all thermophilic, autotrophs which utilise chemical energy, typically by reducing sulfur compounds using hydrogen.

Methanobacteriales is an order of archaeans in the class Methanobacteria. Species within this order differ from other methanogens in that they can use fewer catabolic substrates and have distinct morphological characteristics, lipid compositions, and RNA sequences. Their cell walls are composed of pseudomurein. Most species are Gram-positive with rod-shaped bodies and some can form long filaments. Most of them use formate to reduce carbon dioxide, but those of the genus Methanosphaera use hydrogen to reduce methanol to methane.

<span class="mw-page-title-main">Methanosarcinales</span> Order of archaea

Methanosarcinales is an order of archaeans in the class Methanomicrobia.

In taxonomy, the Methanocorpusculaceae are a family of microbes within the order Methanomicrobiales. It contains exactly one genus, Methanocorpusculum. The species within Methanocorpusculum were first isolated from anaerobic digesters and anaerobic wastewater treatment plants. In the wild, they prefer freshwater environments. Unlike many other methanogenic archaea, they do not require high temperatures or extreme salt concentrations to live and grow.

Methanospirillaceae are a family of microbes within Methanomicrobiales.

Methanogenium is a genus of archaeans in the family Methanomicrobiaceae. The type species is Methanogenium cariaci.

Methanocaldococcus formerly known as Methanococcus is a genus of coccoid methanogen archaea. They are all mesophiles, except the thermophilic M. thermolithotrophicus and the hyperthermophilic M. jannaschii. The latter was discovered at the base of a “white smoker” chimney at 21°N on the East Pacific Rise and it was the first archaean genome to be completely sequenced, revealing many novel and eukaryote-like elements.

In taxonomy, Methanolobus is a genus of methanogenic archaea within the Methanosarcinaceae. These organisms are strictly anaerobes and live exclusively through the production of methane, but the species within Methanolobus cannot use carbon dioxide with hydrogen, acetate or formate, only methyl compounds. The cells are irregular coccoid in form and approximately 1 μm in diameter. They do not form endospores. They are Gram negative and only some are motile, via a single flagellum. They are found in lake and ocean sediments that lack oxygen.

Methanobrevibacter is a genus of archaeans in the family Methanobacteriaceae. The species within Methanobrevibacter are strictly anaerobic archaea that produce methane, for the most part through the reduction of carbon dioxide via hydrogen. Most species live in the intestines of larger organisms, such as termites and are responsible for the large quantities of greenhouse gases that they produce. Mbr. smithii, found in the human intestine, may play a role in obesity.

In taxonomy, Methanocorpusculum is a genus of microbes within the family Methanocorpusculaceae. The species within Methanocorpusculum were first isolated from biodisgester wastewater and activated sludge from anaerobic digestors. In nature, they live in freshwater environments. Unlike most other methanogenic archaea, they do not require high temperatures or extreme salt concentrations to live and grow.

In taxonomy, Methanospirillum is a genus of microbes within the family Methanospirillaceae. All its species are methanogenic archaea. The cells are bar-shaped and form filaments. Most produce energy via the reduction of carbon dioxide with hydrogen, but some species can also use formate as a substrate. They are Gram-negative and move using archaella on the sides of the cells. They are strictly anaerobic, and they are found in wetland soil and anaerobic water treatment systems.

Methanobrevibacter smithii is the predominant archaeon in the microbiota of the human gut. M. smithii has a coccobacillus shape. It plays an important role in the efficient digestion of polysaccharides by consuming the end products of bacterial fermentation. Methanobrevibacter smithii is a single-celled microorganism from the Archaea domain. M. smithii is a methanogen, and a hydrogenotroph that recycles the hydrogen by combining it with carbon dioxide to methane. The removal of hydrogen by M. smithii is thought to allow an increase in the extraction of energy from nutrients by shifting bacterial fermentation to more oxidized end products.

Methanosphaera stadtmaniae is a methanogen archaeon. It is a non-motile, Gram-positive, spherical-shaped organism that obtains energy by using hydrogen to reduce methanol to methane. It does not possess cytochromes and is part of the large intestine's biota.

References

  1. See the NCBI webpage on Methanosphaera. Data extracted from the "NCBI taxonomy resources". National Center for Biotechnology Information . Retrieved 2007-03-19.
  2. David R Boone; Richard W. Castenholz, eds. (2001). Bergey's Manual of Systematic Bacteriology Volume I: The Archaea and the Deeply Branching Phototrophic Bacteria (2 ed.). Springer. p. 227. ISBN   978-1-4419-3159-7 . Retrieved 2016-07-24.
  3. Adam S. Bonin; David R. Boone (1979). "The Order Methanobacteriales". The Prokaryotes. Vol. 3. Springer. pp. 231–243. doi:10.1007/0-387-30743-5_11. ISBN   978-0-387-30743-5.

Further reading