Tawuia

Last updated

Tawuia
Temporal range: Statherian to Cambrian Stage 3, 1630–518 Ma
Tawuia Chuaria Longfengshania.jpg
reconstruction as a slime mold-like organism
Scientific classification OOjs UI icon edit-ltr.svg
(unranked): incertae sedis
Genus: Tawuia

Tawuia is a millimetric disc-shaped, most likely multicellular macrofossil from the Neoproterozoic. It is considered to be synonymous with Chuaria and Longfengshania, which, in turn, are thought to represent different life stages of the same organism. [1]

Tawuia describes a more sausage- or crescent-shaped fossil; Chuaria refers to more discoial instances.

The fossils are often preserved as organic compressions. They are considered to represent microbial structures; [1] some authors affiliate them with slime molds [1] Stratigraphically, they range from 1,630  million years ago [2] to the early Cambrian [3]

Chuaria is multicellular.

Related Research Articles

<span class="mw-page-title-main">Ediacaran</span> Third and last period of the Neoproterozoic Era

The Ediacaran is a geological period of the Neoproterozoic era that spans 96 million years from the end of the Cryogenian period at 635 Mya to the beginning of the Cambrian period at 538.8 Mya. It is the last period of the Proterozoic eon as well as the last of the so-called "Precambrian supereon", before the beginning of the subsequent Cambrian period marks the start of the Phanerozoic eon, where recognizable fossil evidence of life becomes common.

<span class="mw-page-title-main">Neoproterozoic</span> Third and last era of the Proterozoic Eon

The Neoproterozoic Era is the unit of geologic time from 1 billion to 538.8 million years ago.

<span class="mw-page-title-main">Hyolitha</span> Palaeozoic lophophorates with small conical shells

Hyoliths are animals with small conical shells, known from fossils from the Palaeozoic era. They are at least considered as being lophotrochozoan, and possibly being lophophorates, a group which includes the brachiopods, while others consider them as being basal lophotrochozoans, or even molluscs.

<span class="mw-page-title-main">Vetulicolia</span> Extinct Cambrian group of animals

Vetulicolia is a phylum of bilaterian animals encompassing several extinct species belonging to the Cambrian period. The phylum was created by Degan Shu and his research team in 2001, and named after Vetulicola cuneata, the first species of the phylum described in 1987.

<span class="mw-page-title-main">Acritarch</span> Microfossils

Acritarchs are organic microfossils, known from approximately 1800 million years ago to the present. The classification is a catch all term used to refer to any organic microfossils that cannot be assigned to other groups. Their diversity reflects major ecological events such as the appearance of predation and the Cambrian explosion.

<i>Nectocaris</i> Extinct animal genus

Nectocaris is a genus of squid-like animal of controversial affinities known from the Cambrian period. The initial fossils were described from the Burgess Shale of Canada. Other similar remains possibly referrable to the genus are known from the Emu Bay Shale of Australia and Chengjiang Biota of China.

<span class="mw-page-title-main">Anseranatidae</span> Family of birds

Anseranatidae, the magpie-geese, is a biological family of waterbirds. The only living species, the magpie goose, is a resident breeder in northern Australia and in southern New Guinea.

<i>Blikanasaurus</i> Extinct genus of dinosaur from the late Triassic of South Africa

Blikanasaurus is a genus of sauropodomorph dinosaur from the late Triassic of South Africa. The generic name Blikanasaurus is derived from Greek, meaning "lizard from Blikana". The species name cromptoni is taken from the surname of A.W. "Fuzz" Crompton, an American paleontologist who led numerous field expeditions in Elliot Formation outcrop localities in South Africa. Blikanasaurus is only known from partial hindlimb bones that were recovered from the lower Elliot Formation (LEF) in the Eastern Cape.

<i>Choia</i> Genus of sponges

Choia is a genus of extinct demosponge ranging from the Cambrian until the Lower Ordovician periods. Fossils of Choia have been found in the Burgess Shale in British Columbia; the Maotianshan shales of China; the Wheeler Shale in Utah; and the Lower Ordovician Fezouata formation. It was first described in 1920 by Charles Doolittle Walcott.

<span class="mw-page-title-main">Ediacaran biota</span> Life of the Ediacaran period

The Ediacaranbiota is a taxonomic period classification that consists of all life forms that were present on Earth during the Ediacaran Period. These were enigmatic tubular and frond-shaped, mostly sessile, organisms. Trace fossils of these organisms have been found worldwide, and represent the earliest known complex multicellular organisms. The term "Ediacara biota" has received criticism from some scientists due to its alleged inconsistency, arbitrary exclusion of certain fossils, and inability to be precisely defined.

Lemdadella is an extinct genus of redlichiid trilobites that lived during the late Atdabanian stage, which lasted from 521 to 514 million years ago during the early part of the Cambrian Period.

Argochampsa is an extinct genus of eusuchian crocodylomorph, usually regarded as a gavialoid crocodilian, related to modern gharials. It lived in the Paleocene of Morocco. Described by Hua and Jouve in 2004, the type species is A. krebsi, with the species named for Bernard Krebs. Argochampsa had a long narrow snout, and appears to have been marine in habits.

The Cambrian explosion is an interval of time approximately 538.8 million years ago in the Cambrian period of the early Paleozoic when a sudden radiation of complex life occurred, and practically all major animal phyla started appearing in the fossil record. It lasted for about 13 to 25 million years and resulted in the divergence of most modern metazoan phyla. The event was accompanied by major diversification in other groups of organisms as well.

<i>Eiffelia</i> Extinct genus of sponges

Eiffelia is an extinct genus of sponges known from the Middle Cambrian Burgess Shale as well as several Early Cambrian small shelly fossil deposits. It is named after Eiffel Peak, which was itself named after the Eiffel Tower. It was first described in 1920 by Charles Doolittle Walcott. It belongs in the Hexactinellid stem group. 60 specimens of Eiffelia are known from the Greater Phyllopod bed, where they comprise 0.11% of the community.

Protospongia is a genus of Porifera known from the Middle Cambrian Burgess Shale. 102 specimens of Protospongia are known from the Greater Phyllopod bed, where they comprise 0.19% of the community.

<span class="mw-page-title-main">Eldoniid</span> Extinct clade of disc-shaped animals

Eldoniids or eldonioids are an extinct clade of enigmatic disc-shaped animals which lived in the early to middle Paleozoic. They are characterized by their "medusoid" (jellyfish-shaped) bodies, with the form of a shallow dome opening below to an offset mouth supplemented by filamentous tentacles. Internally, they have a distinctive C-shaped cavity encompassing the gut, as well as hollow radial (radiating) structures arranged around a central ring canal. Most eldoniids are soft-bodied and can only be preserved in lagerstätten, but a few species may have hosted mineralized deposits. Historically, the affinities of eldoniids was enigmatic; recently, they been assessed as cambroernid deuterostomes. Their lifestyle is still an unresolved question; some authors reconstruct eldoniids as free-floating planktonic predators similar to jellyfish, while others argue that they were passive detritivores, embedded within the seabed for much of their life.

Velumbrella is a medusoid organism with tentacles known from the Middle Cambrian of Poland, and perhaps related to Rotadiscus; the fossils depict a scleritosed disk with a U-shaped gut. It was originally related to members of the Ediacara biota but is now thought to be related to the paropsonemids.

<span class="mw-page-title-main">Cambroernid</span> Extinct clade of animals

The cambroernids are an informally-named clade of unusual Paleozoic animals with coiled bodies and filamentous tentacles. They include a number of early to middle Paleozoic genera noted as "bizarre" or "orphan" taxa, meaning that their affinities with other animals, living or extinct, have long been uncertain. One leading hypothesis is that cambroernids were unusual ambulacrarian deuterostomes, related to echinoderms and hemichordates. Previously some cambroernids were compared to members of the broad invertebrate clade Lophotrochozoa; in particularly they were allied with lophophorates, a subset of lophotrochozoans bearing ciliated tentacles known as lophophores. However, this interpretation has more recently been considered unlikely relative to the deuterostome hypothesis for cambroernid origins.

<span class="mw-page-title-main">Avalon explosion</span> Proposed evolutionary event in the history of metazoa, producing the Ediacaran biota

The Avalon explosion, named from the Precambrian faunal trace fossils discovered on the Avalon Peninsula in Newfoundland, eastern Canada, is a proposed evolutionary radiation of prehistoric animals about 575 million years ago in the Ediacaran period, with the Avalon explosion being one of three eras grouped in this time period. This evolutionary event is believed to have occurred some 33 million years earlier than the Cambrian explosion, which had been long thought to be when complex life started on Earth.

References

  1. 1 2 3 Teyssèdre, B. (2003), "Trois classes de fossiles precambriens pour un meme taxon", Comptes Rendus Palevol (in French), 6 (503): 508–510, doi:10.1016/j.crpv.2003.09.023 [ dead link ]
  2. Srivastava, P.; Bali, R. (2006). "Proterozoic carbonaceous remains from the Chorhat Sandstone: oldest fossils of the Vindhyan Supergroup, Central India". Geobios. 39 (6): 873–878. Bibcode:2006Geobi..39..873S. doi:10.1016/j.geobios.2006.02.001.
  3. Li, Rui-Yun; Fu, Dong-Jing; Zhang, Xing-Liang (22 December 2022). "Chuaria Walcott from the early Cambrian Qingjiang biota: a taxon persisted for billions of years". Palaeoworld. 33 (1): 11–21. doi:10.1016/j.palwor.2022.12.008.