Euglenozoa

Last updated

Euglenozoa
Temporal range: Stenian (over 1000 MYA) - present [1]
Two Euglena.jpg
Two Euglena
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Discoba
Superphylum: Discicristata
Phylum: Euglenozoa
Cavalier-Smith, 1981 [2]
Classes

Euglenozoa are a large group of flagellate Discoba. They include a variety of common free-living species, as well as a few important parasites, some of which infect humans. Euglenozoa are represented by four major groups, i.e., Kinetoplastea, Diplonemea, Euglenida, and Symbiontida. Euglenozoa are unicellular, mostly around 15–40 μm (0.00059–0.00157 in) in size, although some euglenids get up to 500 μm (0.020 in) long. [3]

Contents

Structure

Most euglenozoa have two flagella, which are inserted parallel to one another in an apical or subapical pocket. In some these are associated with a cytostome or mouth, used to ingest bacteria or other small organisms. This is supported by one of three sets of microtubules that arise from the flagellar bases; the other two support the dorsal and ventral surfaces of the cell. [4]

Some other euglenozoa feed through absorption, and many euglenids possess chloroplasts, the only eukaryotes outside Diaphoretickes to do so without performing kleptoplasty, [5] [ failed verification ] and so obtain energy through photosynthesis. These chloroplasts are surrounded by three membranes and contain chlorophylls A and B, along with other pigments, so are probably derived from a green alga, captured long ago in an endosymbiosis by a basal euglenozoan. Reproduction occurs exclusively through cell division. During mitosis, the nuclear membrane remains intact, and the spindle microtubules form inside of it. [4]

The group is characterized by the ultrastructure of the flagella. In addition to the normal supporting microtubules or axoneme, each contains a rod (called paraxonemal), which has a tubular structure in one flagellum and a latticed structure in the other. Based on this, two smaller groups have been included here: the diplonemids and Postgaardi . [6]

Classification

Historically, euglenozoans have been treated as either plants or animals, depending on whether they belong to largely photosynthetic groups or not. Hence they have names based on either the International Code of Nomenclature for algae, fungi, and plants (ICNafp) or the International Code of Zoological Nomenclature (ICZN). For example, one family has the name Euglenaceae under the ICNafp and the name Euglenidae under the ICZN. As another example, the genus name Dinema is acceptable under the ICZN, but illegitimate under the ICNafp, as it is a later homonym of an orchid genus, so that the synonym Dinematomonas must be used instead. [7]

The Euglenozoa are generally accepted as monophyletic. They are related to Percolozoa; the two share mitochondria with disk-shaped cristae, which only occurs in a few other groups. [8] Both probably belong to a larger group of eukaryotes called the Excavata. [9] This grouping, though, has been challenged. [10]

Phylogeny

The phylogeny based on the work of Cavalier-Smith (2016): [11]

A consensus phylogeny following the review by Kostygov et al. (2021): [7]

Taxonomy

Cavalier-Smith (2016/2017)

The following classification of Euglenozoa is as described by Cavalier-Smith in 2016, [11] modified to include the new subphylum Plicomonada according to Cavalier-Smith et al (2017). [12]

Phylum EuglenozoaCavalier-Smith 1981 emend. Simpson 1997 [Euglenobionta]

  • Subphylum Glycomonada Cavalier-Smith 2016
  • Subphylum Plicomonada Cavalier-Smith 2017
    • Infraphylum Postgaardia Cavalier-Smith 2016 stat. nov. Cavalier-Smith 2017
    • Infraphylum Euglenoida Bütschli 1884 emend. Senn 1900 stat. nov. Cavalier-Smith, 2017 [Euglenophyta; Euglenida Buetschli 1884; Euglenoidina Buetschli 1884]
      • Parvphylum Entosiphona Cavalier-Smith 2016 stat. nov. Cavalier-Smith 2017
      • Parvphylum Dipilida Cavalier-Smith 2016 stat. nov. Cavalier-Smith 2017
        • Superclass Rigimonada* Cavalier-Smith 2016
        • Superclass Spirocuta Cavalier-Smith 2016
          • Class Peranemea Cavalier-Smith 1993 emend. Cavalier-Smith 2016
            • Subclass Acroglissia Cavalier-Smith 2016
            • Subclass Peranemia Cavalier-Smith 2016
              • Order Peranemida Bütschli 1884 stat. nov. Cavalier-Smith 1993
                • Family Peranematidae [Peranemataceae Dujardin 1841; Pseudoperanemataceae Christen 1962]
            • Subclass Anisonemia Cavalier-Smith 2016
              • Order Anisonemida Cavalier-Smith 2016 [Heteronematales Leedale 1967]
                • Family Anisonemidae Saville Kent, 1880 em. Cavalier-Smith 2016 [Heteronemidae Calkins 1926; Zygoselmidaceae Kent 188]
              • Order Natomonadida Cavalier-Smith 2016
                • Suborder Metanemina Cavalier-Smith 2016
                • Suborder Rhabdomonadina Leedale 1967 emend. Cavalier-Smith 1993 [Astasida Ehrenberg 1831; Rhabdomonadia Cavalier-Smith 1993; Rhabdomonadophyceae; Rhabdomonadales]
                  • Family Distigmidae Hollande, 1942
                  • Family Astasiidae Saville Kent, 1884 [Astasiaceae Ehrenberg orth. mut. Senn 1900; Rhabdomonadaceae Fott 1971; Menoidiaceae Buetschli 188; Menoidiidae Hollande, 1942]
          • Class Euglenophyceae Schoenichen 1925 emend. Marin & Melkonian 2003 [Euglenea Bütschli 1884 emend. Busse & Preisfeld 2002; Euglenoidea Bütschli 1884; Euglenida Bütschli 1884] (Photosynthetic clade)
            • Subclass Rapazia Cavalier-Smith 2016
            • Subclass Euglenophycidae Busse and Preisfeld, 2003
              • Order Eutreptiida [Eutreptiales Leedale 1967 emend. Marin & Melkonian 2003; Eutreptiina Leedale 1967]
              • Order Euglenida Ritter von Stein, 1878 stat. n. Calkins, 1926 [Euglenales Engler 1898 emend. Marin & Melkonian 2003; Euglenina Buetschli 1884; Euglenomorphales Leedale 1967; Colaciales Smith 1938]
                • Family Euglenamorphidae Hollande, 1952 stat. n. Cavalier-Smith 2016 [Euglenomorphaceae; Hegneriaceae Brumpt & Lavier 1924]
                • Family Phacidae [Phacaceae Kim et al. 2010]
                • Family Euglenidae Bütschli 1884 [Euglenaceae Dujardin 1841 emend. Kim et al. 2010; Colaciaceae Smith 1933] (Mucilaginous clade)

Kostygov et al. (2021)

Phylum EuglenozoaCavalier-Smith 1981 emend. Simpson 1997 [7]

Related Research Articles

<span class="mw-page-title-main">Alveolate</span> Superphylum of protists

The alveolates are a group of protists, considered a major clade and superphylum within Eukarya. They are currently grouped with the stramenopiles and Rhizaria among the protists with tubulocristate mitochondria into the SAR supergroup.

<span class="mw-page-title-main">Euglenid</span> Class of protozoans

Euglenids are one of the best-known groups of flagellates, which are excavate eukaryotes of the phylum Euglenophyta and their cell structure is typical of that group. They are commonly found in freshwater, especially when it is rich in organic materials, with a few marine and endosymbiotic members. Many euglenids feed by phagocytosis, or strictly by diffusion. A monophyletic group consisting of the mixotrophic Rapaza viridis and the two groups Eutreptiales and Euglenales have chloroplasts and produce their own food through photosynthesis. This group is known to contain the carbohydrate paramylon.

<span class="mw-page-title-main">Kinetoplastida</span> Flagellated protists belonging to the phylum Euglenozoa

Kinetoplastida is a group of flagellated protists belonging to the phylum Euglenozoa, and characterised by the presence of a distinctive organelle called the kinetoplast, a granule containing a large mass of DNA. The group includes a number of parasites responsible for serious diseases in humans and other animals, as well as various forms found in soil and aquatic environments. The organisms are commonly referred to as "kinetoplastids" or "kinetoplasts".

<span class="mw-page-title-main">Amoebozoa</span> Phylum of protozoans

Amoebozoa is a major taxonomic group containing about 2,400 described species of amoeboid protists, often possessing blunt, fingerlike, lobose pseudopods and tubular mitochondrial cristae. In traditional classification schemes, Amoebozoa is usually ranked as a phylum within either the kingdom Protista or the kingdom Protozoa. In the classification favored by the International Society of Protistologists, it is retained as an unranked "supergroup" within Eukaryota. Molecular genetic analysis supports Amoebozoa as a monophyletic clade. Modern studies of eukaryotic phylogenetic trees identify it as the sister group to Opisthokonta, another major clade which contains both fungi and animals as well as several other clades comprising some 300 species of unicellular eukaryotes. Amoebozoa and Opisthokonta are sometimes grouped together in a high-level taxon, variously named Unikonta, Amorphea or Opimoda.

<span class="mw-page-title-main">Phaeodarea</span> Class of protists

Phaeodarea or Phaeodaria is a group of amoeboid cercozoan organisms. They are traditionally considered radiolarians, but in molecular trees do not appear to be close relatives of the other groups, and are instead placed among the Cercozoa. They are distinguished by the structure of their central capsule and by the presence of a phaeodium, an aggregate of waste particles within the cell.

<span class="mw-page-title-main">Metamonad</span> Phylum of excavate protists

The metamonads are a large group of flagellate amitochondriate microscopic eukaryotes. Their composition is not entirely settled, but they include the retortamonads, diplomonads, and possibly the parabasalids and oxymonads as well. These four groups are all anaerobic, occurring mostly as symbiotes or parasites of animals, as is the case with Giardia lamblia which causes diarrhea in mammals.

<span class="mw-page-title-main">Streptophyta</span> Clade consisting of the charophyte algae and land plants

Streptophyta, informally the streptophytes, is a clade of plants. The composition of the clade varies considerably between authors, but the definition employed here includes land plants and all green algae except the Chlorophyta and the more basal Prasinodermophyta.

<span class="mw-page-title-main">Yellow-green algae</span> Class of algae

Yellow-green algae or the Xanthophyceae (xanthophytes) are an important group of heterokont algae. Most live in fresh water, but some are found in marine and soil habitats. They vary from single-celled flagellates to simple colonial and filamentous forms. Xanthophyte chloroplasts contain the photosynthetic pigments chlorophyll a, chlorophyll c, β-carotene, and the carotenoid diadinoxanthin. Unlike other Stramenopiles (heterokonts), their chloroplasts do not contain fucoxanthin, which accounts for their lighter colour. Their storage polysaccharide is chrysolaminarin. Xanthophyte cell walls are produced of cellulose and hemicellulose. They appear to be the closest relatives of the brown algae.

<span class="mw-page-title-main">Ichthyosporea</span> Clade of eukaryote organisms

The Ichthyosporea are a small group of Opisthokonta in Eukaryota, mostly parasites of fish and other animals.

<span class="mw-page-title-main">Archamoebae</span> Phylum of protists

The Archamoebae are a group of protists originally thought to have evolved before the acquisition of mitochondria by eukaryotes. They include genera that are internal parasites or commensals of animals. A few species are human pathogens, causing diseases such as amoebic dysentery. The other genera of archamoebae live in freshwater habitats and are unusual among amoebae in possessing flagella. Most have a single nucleus and flagellum, but the giant amoeba Pelomyxa has many of each.

<span class="mw-page-title-main">Monadofilosa</span> Group of protists

Monadofilosa is a grouping of Cercozoa. These organisms are single-celled amoeboid protists.

<span class="mw-page-title-main">Jakobid</span>

Jakobids are an order of free-living, heterotrophic, flagellar eukaryotes in the supergroup Excavata. They are small, and can be found in aerobic and anaerobic environments. The order Jakobida, believed to be monophyletic, consists of only twenty species at present, and was classified as a group in 1993. There is ongoing research into the mitochondrial genomes of jakobids, which are unusually large and bacteria-like, evidence that jakobids may be important to the evolutionary history of eukaryotes.

<span class="mw-page-title-main">Dictyochophyceae</span> Class of single-celled organisms

Dictyochophyceae sensu lato is a photosynthetic lineage of heterokont algae.

<span class="mw-page-title-main">Sarcomonadea</span> Class of flagellate protists

The sarcomonads or class Sarcomonadea are a group of amoeboid biciliate protists in the phylum Cercozoa. They are characterized by a propensity to move through gliding on their posterior cilium or through filopodia, a lack of scales or external theca, a soft cell surface without obvious cortical filamentous or membranous skeleton, two cilia without scales or hairs, tubular mitochondrial cristae, near-spherical extrusomes, and a microbody attached to the nucleus.

<span class="mw-page-title-main">Bodonida</span> Order of micro-organisms

Bodonida is an order of kinetoplastid flagellate excavates. It contains the genera Bodo and Rhynchomonas, relatives to the parasitic trypanosomes. This order also contains the colonial genus Cephalothamnium.

<span class="mw-page-title-main">Taxonomy of Protista</span> Classification of eukaryotes

A protist is any eukaryotic organism that is not an animal, plant, or fungus. The protists do not form a natural group, or clade, since they exclude certain eukaryotes with whom they share a common ancestor; but, like algae or invertebrates, the grouping is used for convenience. In some systems of biological classification, such as the popular five-kingdom scheme proposed by Robert Whittaker in 1969, the protists make up a kingdom called Protista, composed of "organisms which are unicellular or unicellular-colonial and which form no tissues". In the 21st century, the classification shifted toward a two-kingdom system of protists: Chromista and Protozoa.

Postgaardia is a proposed basal clade of flagellate Euglenozoa, following Thomas Cavalier-Smith. As of April 2023, the Interim Register of Marine and Nonmarine Genera treats the group as a subphylum. A 2021 review of Euglenozoa places Cavalier-Smith's proposed members of Postgaardia in the class Symbiontida. As Euglenozoans may be basal eukaryotes, the Postgaardia may be key to studying the evolution of Eukaryotes, including the incorporation of eukaryotic traits such as the incorporation of alphaproteobacterial mitochondrial endosymbionts.

<span class="mw-page-title-main">Ventrifilosa</span> Superclass of protists

Ventrifilosa is a highly diverse group of phagotrophic protists that glide through their flagella and emit filose pseudopods from their ventral side for feeding. Because of their mixture of amoeba and flagellate characteristics, they are amoeboflagellates. Members of this group are the Imbricatea, Sarcomonadea and Thecofilosea.

<span class="mw-page-title-main">Gyrista</span> Phylum of eukaryotic organisms

Gyrista is a phylum of heterokont protists containing three diverse groups: the mostly photosynthetic Ochrophyta, the parasitic Pseudofungi, and the recently described group of nanoflagellates known as Bigyromonada. Members of this phylum are characterized by the presence of a helix or a double helix/ring system in the ciliary transition region.

<span class="mw-page-title-main">Glissomonadida</span> Order of protists

The glissomonads are a group of bacterivorous gliding flagellated protists that compose the order Glissomonadida, in the amoeboflagellate phylum Cercozoa. They comprise a vast, largely undescribed diversity of soil and freshwater organisms. They are the sister group to cercomonads; the two orders form a solid clade of gliding soil-dwelling flagellates called Pediglissa.

References

  1. Zakryś, B; Milanowski, R; Karnkowska, Anna (2017). "Evolutionary Origin of Euglena". Euglena: Biochemistry, Cell and Molecular Biology. Advances in Experimental Medicine and Biology. Vol. 979. pp. 3–17. doi:10.1007/978-3-319-54910-1_1. ISBN   978-3-319-54908-8. PMID   28429314.
  2. Cavalier-Smith T (1981). "Eukaryote kingdoms: seven or nine?". Bio Systems. 14 (3–4): 461–481. doi:10.1016/0303-2647(81)90050-2. PMID   7337818.
  3. "Euglenozoa". Encyclopedia of Life. National Museum of Natural History - Smithsonian Institution. Retrieved 16 January 2020.
  4. 1 2 Patterson DJ (October 1999). "The Diversity of Eukaryotes". The American Naturalist. 154 (S4): S96–S124. doi:10.1086/303287. PMID   10527921. S2CID   4367158.
  5. Dorrell RG, Smith AG (July 2011). "Do red and green make brown?: perspectives on plastid acquisitions within chromalveolates". Eukaryotic Cell. 10 (7): 856–868. doi:10.1128/EC.00326-10. PMC   3147421 . PMID   21622904.
  6. Simpson AG (1997). "The Identity and Composition of Euglenozoa". Archiv für Protistenkunde. 148 (3): 318–328. doi:10.1016/s0003-9365(97)80012-7.
  7. 1 2 3 Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J (March 2021). "Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses". Open Biology. 11 (3): 200407. doi:10.1098/rsob.200407. PMC   8061765 . PMID   33715388.
  8. Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF (November 2000). "A kingdom-level phylogeny of eukaryotes based on combined protein data". Science. 290 (5493): 972–977. Bibcode:2000Sci...290..972B. doi:10.1126/science.290.5493.972. PMID   11062127.
  9. Simpson AG (November 2003). "Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota)". International Journal of Systematic and Evolutionary Microbiology. 53 (Pt 6): 1759–1777. doi: 10.1099/ijs.0.02578-0 . PMID   14657103.
  10. Cavalier-Smith T (June 2010). "Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree". Biology Letters. 6 (3): 342–345. doi:10.1098/rsbl.2009.0948. PMC   2880060 . PMID   20031978.
  11. 1 2 Cavalier-Smith T (October 2016). "Higher classification and phylogeny of Euglenozoa". European Journal of Protistology. 56: 250–276. doi: 10.1016/j.ejop.2016.09.003 . PMID   27889663.
  12. Cavalier-Smith T (October 2017). "Euglenoid pellicle morphogenesis and evolution in light of comparative ultrastructure and trypanosomatid biology: Semi-conservative microtubule/strip duplication, strip shaping and transformation". European Journal of Protistology. 61 (Pt A): 137–179. doi: 10.1016/j.ejop.2017.09.002 . PMID   29073503.