Euglenozoa

Last updated

Euglenozoa
Temporal range: Stenian (over 1000 MYA) - present [1]
Two Euglena.jpg
Two Euglena
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Discoba
Superphylum: Discicristata
Phylum: Euglenozoa
Cavalier-Smith, 1981 [2]
Classes

Euglenozoa are a large group of flagellate Discoba. They include a variety of common free-living species, as well as a few important parasites, some of which infect humans. Euglenozoa are represented by four major groups, i.e., Kinetoplastea, Diplonemea, Euglenida, and Symbiontida. Euglenozoa are unicellular, mostly around 15–40 μm (0.00059–0.00157 in) in size, although some euglenids get up to 500 μm (0.020 in) long. [3]

Contents

Structure

Most euglenozoa have two flagella, which are inserted parallel to one another in an apical or subapical pocket. In some these are associated with a cytostome or mouth, used to ingest bacteria or other small organisms. This is supported by one of three sets of microtubules that arise from the flagellar bases; the other two support the dorsal and ventral surfaces of the cell. [4]

Some other euglenozoa feed through absorption, and many euglenids possess chloroplasts, the only eukaryotes outside Diaphoretickes to do so without performing kleptoplasty, [5] [6] and so obtain energy through photosynthesis. These chloroplasts are surrounded by three membranes and contain chlorophylls A and B, along with other pigments, so are probably derived from a green alga, captured long ago in an endosymbiosis by a basal euglenozoan. Reproduction occurs exclusively through cell division. During mitosis, the nuclear membrane remains intact, and the spindle microtubules form inside of it. [4]

The group is characterized by the ultrastructure of the flagella. In addition to the normal supporting microtubules or axoneme, each contains a rod (called paraxonemal), which has a tubular structure in one flagellum and a latticed structure in the other. Based on this, two smaller groups have been included here: the diplonemids and Postgaardi . [7]

Classification

Historically, euglenozoans have been treated as either plants or animals, depending on whether they belong to largely photosynthetic groups or not. Hence they have names based on either the International Code of Nomenclature for algae, fungi, and plants (ICNafp) or the International Code of Zoological Nomenclature (ICZN). For example, one family has the name Euglenaceae under the ICNafp and the name Euglenidae under the ICZN. As another example, the genus name Dinema is acceptable under the ICZN, but illegitimate under the ICNafp, as it is a later homonym of an orchid genus, so that the synonym Dinematomonas must be used instead. [8]

The Euglenozoa are generally accepted as monophyletic. They are related to Percolozoa; the two share mitochondria with disk-shaped cristae, which only occurs in a few other groups. [9] Both probably belong to a larger group of eukaryotes called the Excavata. [10] This grouping, though, has been challenged. [11]

Phylogeny

The phylogeny based on the work of Cavalier-Smith (2016): [12]

A consensus phylogeny following the review by Kostygov et al. (2021): [8]

Taxonomy

Cavalier-Smith (2016/2017)

The following classification of Euglenozoa is as described by Cavalier-Smith in 2016, [12] modified to include the new subphylum Plicomonada according to Cavalier-Smith et al (2017). [13]

Phylum EuglenozoaCavalier-Smith 1981 emend. Simpson 1997 [Euglenobionta]

  • Subphylum Glycomonada Cavalier-Smith 2016
  • Subphylum Plicomonada Cavalier-Smith 2017
    • Infraphylum Postgaardia Cavalier-Smith 2016 stat. nov. Cavalier-Smith 2017
    • Infraphylum Euglenoida Bütschli 1884 emend. Senn 1900 stat. nov. Cavalier-Smith, 2017 [Euglenophyta; Euglenida Buetschli 1884; Euglenoidina Buetschli 1884]
      • Parvphylum Entosiphona Cavalier-Smith 2016 stat. nov. Cavalier-Smith 2017
      • Parvphylum Dipilida Cavalier-Smith 2016 stat. nov. Cavalier-Smith 2017
        • Superclass Rigimonada* Cavalier-Smith 2016
        • Superclass Spirocuta Cavalier-Smith 2016
          • Class Peranemea Cavalier-Smith 1993 emend. Cavalier-Smith 2016
            • Subclass Acroglissia Cavalier-Smith 2016
            • Subclass Peranemia Cavalier-Smith 2016
              • Order Peranemida Bütschli 1884 stat. nov. Cavalier-Smith 1993
                • Family Peranematidae [Peranemataceae Dujardin 1841; Pseudoperanemataceae Christen 1962]
            • Subclass Anisonemia Cavalier-Smith 2016
              • Order Anisonemida Cavalier-Smith 2016 [Heteronematales Leedale 1967]
                • Family Anisonemidae Saville Kent, 1880 em. Cavalier-Smith 2016 [Heteronemidae Calkins 1926; Zygoselmidaceae Kent 188]
              • Order Natomonadida Cavalier-Smith 2016
                • Suborder Metanemina Cavalier-Smith 2016
                • Suborder Rhabdomonadina Leedale 1967 emend. Cavalier-Smith 1993 [Astasida Ehrenberg 1831; Rhabdomonadia Cavalier-Smith 1993; Rhabdomonadophyceae; Rhabdomonadales]
                  • Family Distigmidae Hollande, 1942
                  • Family Astasiidae Saville Kent, 1884 [Astasiaceae Ehrenberg orth. mut. Senn 1900; Rhabdomonadaceae Fott 1971; Menoidiaceae Buetschli 188; Menoidiidae Hollande, 1942]
          • Class Euglenophyceae Schoenichen 1925 emend. Marin & Melkonian 2003 [Euglenea Bütschli 1884 emend. Busse & Preisfeld 2002; Euglenoidea Bütschli 1884; Euglenida Bütschli 1884] (Photosynthetic clade)
            • Subclass Rapazia Cavalier-Smith 2016
            • Subclass Euglenophycidae Busse and Preisfeld, 2003
              • Order Eutreptiida [Eutreptiales Leedale 1967 emend. Marin & Melkonian 2003; Eutreptiina Leedale 1967]
              • Order Euglenida Ritter von Stein, 1878 stat. n. Calkins, 1926 [Euglenales Engler 1898 emend. Marin & Melkonian 2003; Euglenina Buetschli 1884; Euglenomorphales Leedale 1967; Colaciales Smith 1938]
                • Family Euglenamorphidae Hollande, 1952 stat. n. Cavalier-Smith 2016 [Euglenomorphaceae; Hegneriaceae Brumpt & Lavier 1924]
                • Family Phacidae [Phacaceae Kim et al. 2010]
                • Family Euglenidae Bütschli 1884 [Euglenaceae Dujardin 1841 emend. Kim et al. 2010; Colaciaceae Smith 1933] (Mucilaginous clade)

Kostygov et al. (2021)

Phylum EuglenozoaCavalier-Smith 1981 emend. Simpson 1997 [8]

Related Research Articles

<span class="mw-page-title-main">Euglenid</span> Class of protozoans

Euglenids or euglenoids are one of the best-known groups of eukaryotic flagellates: single-celled organisms with flagella, or whip-like tails. They are classified in the phylum Euglenophyta, class Euglenida or Euglenoidea. Euglenids are commonly found in fresh water, especially when it is rich in organic materials, but they have a few marine and endosymbiotic members. Many euglenids feed by phagocytosis, or strictly by diffusion. A monophyletic subgroup known as Euglenophyceae have chloroplasts and produce their own food through photosynthesis. This group contains the carbohydrate paramylon.

<span class="mw-page-title-main">Kinetoplastida</span> Flagellated protists belonging to the phylum Euglenozoa

Kinetoplastida is a group of flagellated protists belonging to the phylum Euglenozoa, and characterised by the presence of a distinctive organelle called the kinetoplast, a granule containing a large mass of DNA. The group includes a number of parasites responsible for serious diseases in humans and other animals, as well as various forms found in soil and aquatic environments. The organisms are commonly referred to as "kinetoplastids" or "kinetoplasts".

<span class="mw-page-title-main">Amoebozoa</span> Phylum of protozoans

Amoebozoa is a major taxonomic group containing about 2,400 described species of amoeboid protists, often possessing blunt, fingerlike, lobose pseudopods and tubular mitochondrial cristae. In traditional classification schemes, Amoebozoa is usually ranked as a phylum within either the kingdom Protista or the kingdom Protozoa. In the classification favored by the International Society of Protistologists, it is retained as an unranked "supergroup" within Eukaryota. Molecular genetic analysis supports Amoebozoa as a monophyletic clade. Modern studies of eukaryotic phylogenetic trees identify it as the sister group to Opisthokonta, another major clade which contains both fungi and animals as well as several other clades comprising some 300 species of unicellular eukaryotes. Amoebozoa and Opisthokonta are sometimes grouped together in a high-level taxon, named Amorphea. Amoebozoa includes many of the best-known amoeboid organisms, such as Chaos, Entamoeba, Pelomyxa and the genus Amoeba itself. Species of Amoebozoa may be either shelled (testate) or naked, and cells may possess flagella. Free-living species are common in both salt and freshwater as well as soil, moss and leaf litter. Some live as parasites or symbionts of other organisms, and some are known to cause disease in humans and other organisms.

<span class="mw-page-title-main">Metamonad</span> Phylum of excavate protists

The metamonads are a large group of flagellate amitochondriate microscopic eukaryotes. They include the retortamonads, diplomonads, parabasalids, oxymonads, and a range of more poorly studied taxa, most of which are free-living flagellates. All metamonads are anaerobic, and most members of the four groups listed above are symbiotes or parasites of animals, as is the case with Giardia lamblia which causes diarrhea in mammals.

<span class="mw-page-title-main">Streptophyta</span> Clade consisting of the charophyte algae and land plants

Streptophyta, informally the streptophytes, is a clade of plants. The composition of the clade varies considerably between authors, but the definition employed here includes land plants and all green algae except the Chlorophyta and the more basal Prasinodermophyta.

<span class="mw-page-title-main">Yellow-green algae</span> Class of algae

Yellow-green algae or the Xanthophyceae (xanthophytes) are an important group of heterokont algae. Most live in fresh water, but some are found in marine and soil habitats. They vary from single-celled flagellates to simple colonial and filamentous forms. Xanthophyte chloroplasts contain the photosynthetic pigments chlorophyll a, chlorophyll c, β-carotene, and the carotenoid diadinoxanthin. Unlike other Stramenopiles (heterokonts), their chloroplasts do not contain fucoxanthin, which accounts for their lighter colour. Their storage polysaccharide is chrysolaminarin. Xanthophyte cell walls are produced of cellulose and hemicellulose. They appear to be the closest relatives of the brown algae.

<span class="mw-page-title-main">Euglenophyceae</span> Unicellular algae

Euglenophyceae (ICBN) or Euglenea (ICZN) is a group of single-celled algae belonging to the phylum Euglenozoa. They have chloroplasts originated from an event of secondary endosymbiosis with a green alga. They are distinguished from other algae by the presence of paramylon as a storage product and three membranes surrounding each chloroplast.

<span class="mw-page-title-main">Monadofilosa</span> Group of protists

Monadofilosa is a grouping of Cercozoa. These organisms are single-celled amoeboid protists.

<span class="mw-page-title-main">Dictyochophyceae</span> Class of single-celled organisms

Dictyochophyceae sensu lato is a photosynthetic lineage of heterokont algae.

<span class="mw-page-title-main">Sarcomonadea</span> Class of flagellate protists

The sarcomonads or class Sarcomonadea are a group of amoeboid biciliate protists in the phylum Cercozoa. They are characterized by a propensity to move through gliding on their posterior cilium or through filopodia, a lack of scales or external theca, a soft cell surface without obvious cortical filamentous or membranous skeleton, two cilia without scales or hairs, tubular mitochondrial cristae, near-spherical extrusomes, and a microbody attached to the nucleus.

<span class="mw-page-title-main">Bodonida</span> Order of micro-organisms

Bodonida is an order of kinetoplastid flagellate excavates. It contains the genera Bodo and Rhynchomonas, relatives to the parasitic trypanosomes. This order also contains the colonial genus Cephalothamnium.

<span class="mw-page-title-main">Taxonomy of Protista</span> Classification of eukaryotes

A protist is any eukaryotic organism that is not an animal, plant, or fungus. The protists do not form a natural group, or clade, since they exclude certain eukaryotes with whom they share a common ancestor; but, like algae or invertebrates, the grouping is used for convenience. In some systems of biological classification, such as the popular five-kingdom scheme proposed by Robert Whittaker in 1969, the protists make up a kingdom called Protista, composed of "organisms which are unicellular or unicellular-colonial and which form no tissues". In the 21st century, the classification shifted toward a two-kingdom system of protists: Chromista and Protozoa.

Postgaardia is a proposed basal clade of flagellate Euglenozoa, following Thomas Cavalier-Smith. As of April 2023, the Interim Register of Marine and Nonmarine Genera treats the group as a subphylum. A 2021 review of Euglenozoa places Cavalier-Smith's proposed members of Postgaardia in the class Symbiontida. As Euglenozoans may be basal eukaryotes, the Postgaardia may be key to studying the evolution of Eukaryotes, including the incorporation of eukaryotic traits such as the incorporation of alphaproteobacterial mitochondrial endosymbionts.

<span class="mw-page-title-main">Ventrifilosa</span> Superclass of protists

Ventrifilosa is a highly diverse group of phagotrophic protists that glide through their flagella and emit filose pseudopods from their ventral side for feeding. Because of their mixture of amoeba and flagellate characteristics, they are amoeboflagellates. Members of this group are the Imbricatea, Sarcomonadea and Thecofilosea.

<span class="mw-page-title-main">Gyrista</span> Phylum of eukaryotic organisms

Gyrista is a phylum of heterokont protists containing three diverse groups: the mostly photosynthetic Ochrophyta, the parasitic Pseudofungi, and the recently described group of nanoflagellates known as Bigyromonada. Members of this phylum are characterized by the presence of a helix or a double helix/ring system in the ciliary transition region.

<span class="mw-page-title-main">Peranemid</span> Group of flagellates

The peranemids are a group of phagotrophic flagellates, single-celled eukaryotes or protists. They belong to the Euglenida, a diverse lineage of flagellates that contains the closely related euglenophyte algae. Like these algae, peranemids have flexible cells capable of deformation or metaboly, and have one or two flagella in the anterior region of the cell. They are classified as family Peranemidae (ICZN) or Peranemataceae (ICBN) within the monotypic order Peranemida (ICZN) or Peranematales (ICBN).

<span class="mw-page-title-main">Spirocuta</span> Group of flagellates with flexible cells

Spirocuta is a clade of euglenids, single-celled eukaryotes or protists belonging to the phylum Euglenozoa. They are distinguished from other euglenids by active deformation of their cell shape, a process called euglenid motion or metaboly. This is made possible by a high number of spirally arranged protein strips that run below their cell membrane and confer the cell with flexibility. These strips compose the helicoidal pellicle, a trait referenced by the alternative name Helicales.

<span class="mw-page-title-main">Anisonemia</span> Group of flagellates

Anisonemia is a clade of single-celled protists belonging to the phylum Euglenozoa, relatives of the Euglenophyceae algae. They are flagellates, with two flagella for locomotion. Anisonemia includes various phagotrophic species and a group of primary osmotrophic protists known as Aphagea.

Eutreptiaceae (ICN) or Eutreptiidae (ICZN) is a family of algae in the class Euglenophyceae. It is the only family within the monotypic order Eutreptiales (ICN) or Eutreptiida (ICZN). It contains predominantly marine single-celled flagellates with photosynthetic chloroplasts.

Neometanema is a genus of phagotrophic flagellates belonging to the Euglenida, a diverse group of flagellates in the phylum Euglenozoa. It is the sole genus within the monotypic family Neometanemidae and suborder Metanemina. It composes the order Natomonadida together with a closely related clade of osmotrophs known as Aphagea.

References

  1. Zakryś, B; Milanowski, R; Karnkowska, Anna (2017). "Evolutionary Origin of Euglena". Euglena: Biochemistry, Cell and Molecular Biology. Advances in Experimental Medicine and Biology. Vol. 979. pp. 3–17. doi:10.1007/978-3-319-54910-1_1. ISBN   978-3-319-54908-8. PMID   28429314.
  2. Cavalier-Smith T (1981). "Eukaryote kingdoms: seven or nine?". Bio Systems. 14 (3–4): 461–481. doi:10.1016/0303-2647(81)90050-2. PMID   7337818.
  3. "Euglenozoa". Encyclopedia of Life. National Museum of Natural History - Smithsonian Institution. Retrieved 16 January 2020.
  4. 1 2 Patterson DJ (October 1999). "The Diversity of Eukaryotes". The American Naturalist. 154 (S4): S96–S124. doi:10.1086/303287. PMID   10527921. S2CID   4367158.
  5. Burki, Fabien; Roger, Andrew J.; Brown, Matthew W.; Simpson, Alastair G.B. (2020-01-01). "The New Tree of Eukaryotes". Trends in Ecology & Evolution. 35 (1): 43–55. doi:10.1016/j.tree.2019.08.008. ISSN   0169-5347. PMID   31606140.
  6. Sibbald, Shannon J.; Archibald, John M. (2020-05-20). "Genomic Insights into Plastid Evolution". Genome Biology and Evolution. 12 (7): 978–990. doi:10.1093/gbe/evaa096. PMC   7348690 . PMID   32402068.
  7. Simpson AG (1997). "The Identity and Composition of Euglenozoa". Archiv für Protistenkunde. 148 (3): 318–328. doi:10.1016/s0003-9365(97)80012-7.
  8. 1 2 3 Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J (March 2021). "Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses". Open Biology. 11 (3): 200407. doi:10.1098/rsob.200407. PMC   8061765 . PMID   33715388.
  9. Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF (November 2000). "A kingdom-level phylogeny of eukaryotes based on combined protein data". Science. 290 (5493): 972–977. Bibcode:2000Sci...290..972B. doi:10.1126/science.290.5493.972. PMID   11062127.
  10. Simpson AG (November 2003). "Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota)". International Journal of Systematic and Evolutionary Microbiology. 53 (Pt 6): 1759–1777. doi: 10.1099/ijs.0.02578-0 . PMID   14657103.
  11. Cavalier-Smith T (June 2010). "Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree". Biology Letters. 6 (3): 342–345. doi:10.1098/rsbl.2009.0948. PMC   2880060 . PMID   20031978.
  12. 1 2 Cavalier-Smith T (October 2016). "Higher classification and phylogeny of Euglenozoa". European Journal of Protistology. 56: 250–276. doi: 10.1016/j.ejop.2016.09.003 . PMID   27889663.
  13. Cavalier-Smith T (October 2017). "Euglenoid pellicle morphogenesis and evolution in light of comparative ultrastructure and trypanosomatid biology: Semi-conservative microtubule/strip duplication, strip shaping and transformation". European Journal of Protistology. 61 (Pt A): 137–179. doi: 10.1016/j.ejop.2017.09.002 . PMID   29073503.