Bodonida

Last updated

Bodonida
Bodo saltans - 400x (13895749563).jpg
Bodo saltans
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Phylum: Euglenozoa
Class: Kinetoplastea
Subclass: Metakinetoplastina
Order: Bodonida
Hollande, 1952 [1]
Suborders [2]

Bodonida is an order of kinetoplastid flagellate excavates. It contains the genera Bodo and Rhynchomonas , relatives to the parasitic trypanosomes. This order also contains the colonial genus Cephalothamnium .

Taxonomy

Bodonida contains the following suborders and families: [2] [3]

Related Research Articles

<span class="mw-page-title-main">Euglenozoa</span> Phylum of protozoans

Euglenozoa are a large group of flagellate Discoba. They include a variety of common free-living species, as well as a few important parasites, some of which infect humans. Euglenozoa are represented by four major groups, i.e., Kinetoplastea, Diplonemea, Euglenida, and Symbiontida. Euglenozoa are unicellular, mostly around 15–40 μm (0.00059–0.00157 in) in size, although some euglenids get up to 500 μm (0.020 in) long.

<span class="mw-page-title-main">Haptophyte</span> Type of algae

The haptophytes, classified either as the Haptophyta, Haptophytina or Prymnesiophyta, are a clade of algae.

<span class="mw-page-title-main">Alveolate</span> Superphylum of protists

The alveolates are a group of protists, considered a major clade and superphylum within Eukarya. They are currently grouped with the stramenopiles and Rhizaria among the protists with tubulocristate mitochondria into the SAR supergroup.

<span class="mw-page-title-main">Pedinellales</span> Order of single-celled organisms

Pedinellales is a group of single-celled algae found in both marine environments and freshwater.

<span class="mw-page-title-main">Chlorarachniophyte</span> Group of algae

The chlorarachniophytes are a small group of exclusively marine algae widely distributed in tropical and temperate waters. They are typically mixotrophic, ingesting bacteria and smaller protists as well as conducting photosynthesis. Normally they have the form of small amoebae, with branching cytoplasmic extensions that capture prey and connect the cells together, forming a net. They may also form flagellate zoospores, which characteristically have a single subapical flagellum that spirals backwards around the cell body, and walled coccoid cells.

<span class="mw-page-title-main">Thomas Cavalier-Smith</span> British evolutionary biologist (1942–2021)

Thomas (Tom) Cavalier-Smith, FRS, FRSC, NERC Professorial Fellow, was a professor of evolutionary biology in the Department of Zoology, at the University of Oxford.

<span class="mw-page-title-main">Amoebozoa</span> Phylum of protozoans

Amoebozoa is a major taxonomic group containing about 2,400 described species of amoeboid protists, often possessing blunt, fingerlike, lobose pseudopods and tubular mitochondrial cristae. In traditional classification schemes, Amoebozoa is usually ranked as a phylum within either the kingdom Protista or the kingdom Protozoa. In the classification favored by the International Society of Protistologists, it is retained as an unranked "supergroup" within Eukaryota. Molecular genetic analysis supports Amoebozoa as a monophyletic clade. Modern studies of eukaryotic phylogenetic trees identify it as the sister group to Opisthokonta, another major clade which contains both fungi and animals as well as several other clades comprising some 300 species of unicellular eukaryotes. Amoebozoa and Opisthokonta are sometimes grouped together in a high-level taxon, variously named Unikonta, Amorphea or Opimoda.

The Ascetosporea are a group of eukaryotes that are parasites of animals, especially marine invertebrates. The two groups, the haplosporids and paramyxids, are not particularly similar morphologically, but consistently group together on molecular trees, which place them near the base of the Cercozoa. Both produce spores without the complex structures found in similar groups.

<i>Phalansterium</i> Genus of single-celled organisms

Phalansterium is a genus of single-celled flagellated organisms comprising several species, which form colonies. Phalansterium produces tetraspores.

<span class="mw-page-title-main">Dictyochophyceae</span> Class of single-celled organisms

Dictyochophyceae sensu lato is a photosynthetic lineage of heterokont algae.

<span class="mw-page-title-main">Ancyromonadida</span> Group of protists

Ancyromonadida or Planomonadida is a small group of biflagellated protists found in the soil and in aquatic habitats, where they feed on bacteria. Includes freshwater or marine organisms, benthic, dorsoventrally compressed and with two unequal flagellae, each emerging from a separate pocket. The apical anterior flagellum can be very thin or end in the cell membrane, while the posterior flagellum is long and is inserted ventrally or laterally. The cell membrane is supported by a thin single-layered theca and the mitochondrial crests are discoidal/flat.

<span class="mw-page-title-main">Podiata</span> Clade of shelled animals

Podiates are a proposed clade containing the Amorphea and the organisms now assigned to the clade CRuMs. Ancyromonadida does not appear to have emerged in this grouping. Sarcomastigota is a proposed subkingdom that includes all the podiates that are not animals or fungi. Sulcozoa is a proposed phylum within Sarcomastigota that does not include the phyla Amoebozoa (clade) and Choanozoa (paraphyletic), i.e. it includes the proposed subphyla Apusozoa and Varisulca

<span class="mw-page-title-main">Varisulca</span> Proposed phylum of protists

Varisulca was a proposed basal Podiate taxon. It encompassed several lineages of heterotrophic protists, most notably the ancyromonads (planomonads), collodictyonids (diphylleids), rigifilids and mantamonadids. Recent evidence suggests that the latter three are closely related to each other, forming a clade called CRuMs, but that this is unlikely to be specifically related to ancyromonads

<span class="mw-page-title-main">Cryptista</span> Phylum of algae

Cryptista is a clade of alga-like eukaryotes. It is most likely related to Archaeplastida which includes plants and many algae, within the larger group Diaphoretickes.

Chrysomerophyceae is a monotypic class of photosynthetic heterokont eukaryotes.

<span class="mw-page-title-main">Picophagea</span> Class of algae

Picophagea, also known as Synchromophyceae, is a class of photosynthetic stramenopiles. The chloroplast of the Synchromophyceae are surrounded by two membranes and arranged in a way where they share the outer pair of membranes. The entire chloroplast complex is surrounded by an additional two outer membranes.

<span class="mw-page-title-main">Obazoa</span> Proposed group of single-celled organisms

Obazoa is a proposed sister clade of Amoebozoa. The term Obazoa is based on the OBA acronym for Opisthokonta, Breviatea, and Apusomonadida, the group's three constituent clades.

<span class="mw-page-title-main">Granofilosea</span> Class of single-celled organisms

Granofilosea is a class of cercozoan protists in the subphylum Reticulofilosa. Out of the three groups that were traditionally considered heliozoans: the heliomonads, gymnosphaerids and desmothoracids, the latter were recently grouped into this new class.

<span class="mw-page-title-main">Chlorophytina</span> Clade of algae

The Chlorophytina are a proposed basal Tetraphytina clade. It is currently seen as sister of the Pedinomonadaceae. It contains the more well-known green alga and is characterized by the presence of phycoplasts.

<span class="mw-page-title-main">Cyanidiophytina</span> Group of algae

Cyanidiophytina is a subdivision of red algae.

References

  1. Hollande, A. (1952). Ordre des Bodonides (Bodonidea ord. nov.). In Traité de Zoologie , pp. 669–693. Edited by P. P. Grassé. Paris: Masson & Cie.
  2. 1 2 Guiry, M.D. & Guiry, G.M. 2018. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org/browse/taxonomy/?id=141999  ; searched on 25 April 2018.
  3. Cavalier-Smith, Thomas (2016). "Higher classification and phylogeny of Euglenozoa". European Journal of Protistology. 56: 250–276. doi: 10.1016/j.ejop.2016.09.003 . PMID   27889663.