Trypanosomatida

Last updated

Trypanosomes
Temporal range: Albian to recent 100–0  Ma
Trypanosoma cruzi crithidia.jpeg
Trypanosoma cruzi
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Phylum: Euglenozoa
Class: Kinetoplastea
Subclass: Metakinetoplastina
Order: Trypanosomatida
Kent 1880
Family: Trypanosomatidae
Doflein 1901
Subfamily

Trypanosomatida is a group of kinetoplastid unicellular organisms distinguished by having only a single flagellum. The name is derived from the Greek trypano (borer) and soma (body) because of the corkscrew-like motion of some trypanosomatid species. All members are exclusively parasitic, found primarily in insects. [1] A few genera have life-cycles involving a secondary host, which may be a vertebrate, invertebrate or plant. These include several species that cause major diseases in humans. [2] Some trypanosomatida are intracellular parasites, with the important exception of Trypanosoma brucei .

Contents

Medical importance

The three major human diseases caused by trypanosomatids are; African trypanosomiasis (sleeping sickness, caused by Trypanosoma brucei and transmitted by tsetse flies [3] ), South American trypanosomiasis (Chagas disease, caused by T. cruzi and transmitted by triatomine bugs), and leishmaniasis (a set of trypanosomal diseases caused by various species of Leishmania transmitted by sandflies [4] ).

Evolution

The family is known from fossils of the extinct genus Paleoleishmania preserved in Burmese amber dating to the Albian (100 mya) and Dominican amber from the Burdigalian (20–15 mya) of Hispaniola. [5] The genus Trypanosoma is also represented in Dominican amber in the extinct species T. antiquus . [6]

Taxonomy

Three genera are dixenous (two hosts in the life cycle) – Leishmania , Phytomonas and Trypanosoma . The remainder are monoxenous (one host in the life cycle). Paratrypanosoma appears to be the first evolving branch in this order. Fifteen genera are recognised in the Trypanosomatidae and there are three subfamilies – Blechomonadinae , Leishmaniinae and Strigomonadinae . The genera in the subfamily Strigomonadinae are characterised by the presence of obligatory intracellular bacteria of the Kinetoplastibacterium genus. [ citation needed ]

T. equiperdum Trypanosoma (248 09) Trypanosoma equiperdum.jpg
T. equiperdum
L. donovani Leishmania donovani 01.png
L. donovani
C. luciliae CRITHIDIA 2.jpg
C. luciliae
P. serpens Epifluorescence microscopy of Phytomonas serpens.png
P. serpens
A. deanei Angomonas deanei structure.TIF
A. deanei

Life cycle

Some trypanosomatids only occupy a single host, while many others are heteroxenous: they live in more than one host species over their life cycle. This heteroxenous life cycle typically includes the intestine of a bloodsucking insect and the blood and/or tissues of a vertebrate. Rarer hosts include other bloodsucking invertebrates, such as leeches, [7] and other organisms such as plants. Different species go through a range of different morphologies at different stages of the life cycle, with most having at least two different morphologies. Typically the promastigote and epimastigote forms are found in insect hosts, trypomastigote forms in the mammalian bloodstream and amastigotes in intracellular environments. [ citation needed ]

Among commonly studied examples, T. brucei , T. congolense , and T. vivax are extracellular, while T. cruzi and Leishmania spp. are intracellular. [8] Trypanosomatids with intracellular stages express δ-amastin proteins on their surfaces. [8] de Paiva et al., 2015 illuminates δ-amastins' roles in intracellular success. [8]

Sexual reproduction

Trypanosomatids that cause globally known diseases such leishmaniasis ( Leishmania species), African trypanosomiasis referred to as sleeping sickness ( Trypanosoma brucei ), and Chagas disease ( Trypanosoma cruzi ) were found to be capable of meiosis and genetic exchange. [9] These findings indicate the capability for sexual reproduction in the Trypanosomatida. [9]

Morphologies

Six main morphologies TrypanosomatidMorphologies PlainSVG.svg
Six main morphologies

A variety of different morphological forms appear in the life cycles of trypanosomatids, distinguished mainly by the position, length and the cell body attachment of the flagellum. The kinetoplast is found closely associated with the basal body at the base of the flagellum and all species of trypanosomatid have a single nucleus. Most of these morphologies can be found as a life cycle stage in all trypanosomatid genera however certain morphologies are particularly common in a particular genus. The various morphologies were originally named from the genus where the morphology was commonly found, although this terminology is now rarely used because of potential confusion between morphologies and genus. Modern terminology is derived from the Greek; "mastig", meaning whip (referring to the flagellum), and a prefix which indicates the location of the flagellum on the cell. For example, the amastigote (prefix "a-", meaning no flagellum) form is also known as the leishmanial form as all Leishmania have an amastigote life cycle stage.[ citation needed ]

Other features

Notable characteristics of trypanosomatids are the ability to perform trans-splicing of RNA and possession of glycosomes, where much of their glycolysis is confined to. The acidocalcisome, another organelle, was first identified in trypanosomes. [12]

Bacterial endosymbiont

Kinetoplastibacterium
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Pseudomonadota
Class: Betaproteobacteria
Order: Burkholderiales
Family: Alcaligenaceae
Genus: Ca. "Kinetoplastibacterium"
Du et al., 1994

Six species of trypanosomatids are known to carry an additional proteobacterial endosymbiont, termed TPE (trypanosomatid proteobacterial endosymbionts). These trypansomatids ( Strigomonas oncopelti , S. culicis , S. galati , Angomonas desouzai , and A. deanei ) are in turn known as SHTs, for symbiont-harboring trypanosomatids. All such symbionts have a shared evolutionary origin and are classified in the Candidatus genus "Kinetoplastibacterium". [13]

As with many symbionts, the bacteria have a much reduced genome compared to their free-living relatives of genera Taylorella and Achromobacter . (GTDB finds the genus sister to Proftella , a symbiont of Diaphorina citri .) [14] Reflecting their inability to live alone, they have lost genes dedicated to essential biological functions, relying on the host instead. They have modified their division to become synchronized with the host. In S. culicis at least, the TPE helps the host by synthesizing heme [13] and producing essential enzymes, staying tethered to the kinetoplast. [15]

Related Research Articles

<i>Leishmania</i> Genus of parasitic flagellate protist

Leishmania is a parasitic protozoan, a single-celled organism of the genus Leishmania that is responsible for the disease leishmaniasis. They are spread by sandflies of the genus Phlebotomus in the Old World, and of the genus Lutzomyia in the New World. At least 93 sandfly species are proven or probable vectors worldwide. Their primary hosts are vertebrates; Leishmania commonly infects hyraxes, canids, rodents, and humans.

<span class="mw-page-title-main">Kinetoplastida</span> Flagellated protists belonging to the phylum Euglenozoa

Kinetoplastida is a group of flagellated protists belonging to the phylum Euglenozoa, and characterised by the presence of a distinctive organelle called the kinetoplast, a granule containing a large mass of DNA. The group includes a number of parasites responsible for serious diseases in humans and other animals, as well as various forms found in soil and aquatic environments. The organisms are commonly referred to as "kinetoplastids" or "kinetoplasts".

<i>Trypanosoma</i> Genus of parasitic flagellate protist in the Kinetoplastea class

Trypanosoma is a genus of kinetoplastids, a monophyletic group of unicellular parasitic flagellate protozoa. Trypanosoma is part of the phylum Euglenozoa. The name is derived from the Greek trypano- (borer) and soma (body) because of their corkscrew-like motion. Most trypanosomes are heteroxenous and most are transmitted via a vector. The majority of species are transmitted by blood-feeding invertebrates, but there are different mechanisms among the varying species. Trypanosoma equiperdum is spread between horses and other equine species by sexual contact. They are generally found in the intestine of their invertebrate host, but normally occupy the bloodstream or an intracellular environment in the vertebrate host.

<i>Trypanosoma brucei</i> Species of protozoan parasite

Trypanosoma brucei is a species of parasitic kinetoplastid belonging to the genus Trypanosoma that is present in sub-Saharan Africa. Unlike other protozoan parasites that normally infect blood and tissue cells, it is exclusively extracellular and inhabits the blood plasma and body fluids. It causes deadly vector-borne diseases: African trypanosomiasis or sleeping sickness in humans, and animal trypanosomiasis or nagana in cattle and horses. It is a species complex grouped into three subspecies: T. b. brucei, T. b. gambiense and T. b. rhodesiense. The first is a parasite of non-human mammals and causes nagana, while the latter two are zoonotic infecting both humans and animals and cause African trypanosomiasis.

<i>Trypanosoma evansi</i> Contagious protist

Trypanosoma evansi is a parasitic species of excavate trypanosome in the genus Trypanosoma that is one cause of surra in animals. Discovered by Griffith Evans in 1880 at Dera Ismail Khan, it is the first known trypanosome that causes infection. It is a common parasite in India and Iran and causes acute disease in camels and horses, and chronic disease in cattle and buffalo. In Pakistan, it has been found to be the most prevalent trypanosome species in donkeys. It is now established to infect other mammals, including humans.

<span class="mw-page-title-main">Amastigote</span>

An amastigote is a protist cell that does not have visible external flagella or cilia. The term is used mainly to describe an intracellular phase in the life-cycle of trypanosomes that replicates. It is also called the leishmanial stage, since in Leishmania it is the form the parasite takes in the vertebrate host, but occurs in all trypanosome genera.

<span class="mw-page-title-main">Kinetoplast</span>

A kinetoplast is a network of circular DNA inside a mitochondrion that contains many copies of the mitochondrial genome. The most common kinetoplast structure is a disk, but they have been observed in other arrangements. Kinetoplasts are only found in Excavata of the class Kinetoplastida. The variation in the structures of kinetoplasts may reflect phylogenic relationships between kinetoplastids. A kinetoplast is usually adjacent to the organism's flagellar basal body, suggesting that it is bound to some components of the cytoskeleton. In Trypanosoma brucei this cytoskeletal connection is called the tripartite attachment complex and includes the protein p166.

Crithidia fasciculata is a species of parasitic excavates. C. fasciculata, like other species of Crithidia have a single host life cycle with insect host, in the case of C. fasciculata this is the mosquito. C. fasciculata have low host species specificity and can infect many species of mosquito.

<i>Leishmania major</i> Species of parasitic protist

Leishmania major is a species of parasite found in the genus Leishmania, and is associated with the disease zoonotic cutaneous leishmaniasis. L. major is an intracellular pathogen which infects the macrophages and dendritic cells of the immune system. Though Leishmania species are found on every continent aside from Antarctica, Leishmania major is found only in the Eastern Hemisphere, specifically in Northern Africa, the Middle East, Northwestern China, and Northwestern India.

<i>Leishmania donovani</i> Species of intracellular parasite

Leishmania donovani is a species of intracellular parasites belonging to the genus Leishmania, a group of haemoflagellate kinetoplastids that cause the disease leishmaniasis. It is a human blood parasite responsible for visceral leishmaniasis or kala-azar, the most severe form of leishmaniasis. It infects the mononuclear phagocyte system including spleen, liver and bone marrow. Infection is transmitted by species of sandfly belonging to the genus Phlebotomus in Old World and Lutzomyia in New World. The species complex it represents is prevalent throughout tropical and temperate regions including Africa, China, India, Nepal, southern Europe, Russia and South America. The species complex is responsible for thousands of deaths every year and has spread to 88 countries, with 350 million people at constant risk of infection and 0.5 million new cases in a year.

<i>Trypanosoma antiquus</i> Extinct species in the kinetoplast class

Trypanosoma antiquus is an extinct species of kinetoplastid, a monophyletic group of unicellular parasitic flagellate protozoa.

Trypanosome may refer to:

<i>Paleoleishmania</i> Extinct genus of parasitic flagellate protist in the Kinetoplastea class

Paleoleishmania is an extinct genus of kinetoplastids, a monophyletic group of unicellular parasitic flagellate protozoa. At present it is placed in the family Trypanosomatidae. The genus contains two species, the type species Paleoleishmania proterus and the later described Paleoleishmania neotropicum.

Wendy Gibson is Professor of Protozoology at University of Bristol, specialising in trypanosomes and molecular parasitology.

Trypanosoma irwini is a blood parasite of koalas. First discovered in 2009 by Linda M. McInnes and her peers, it was named in honor of Steve Irwin, "The Crocodile Hunter". The study done by McInnes et al. was the first to describe a Trypanosoma species from koalas.

<i>Angomonas deanei</i> Species of parasitic flagellate protist in the Kinetoplastea class

Angomonas deanei is a flagellated trypanosomatid protozoan. As an obligate parasite, it infects the gastrointestinal tract of insects, and is in turn a host to symbiotic bacteria. The bacterial endosymbiont Ca. "Kinetoplastibacterium crithidii" maintains a permanent mutualistic relationship with the protozoan such that it is no longer able to reproduce and survive on its own. The symbiosis, subsequently also discovered in varying degrees in other protists such as Strigomonas culicis, Novymonas esmeraldas, Diplonema japonicumand Diplonema aggregatum are considered as good models for the understanding of the evolution of eukaryotes from prokaryotes, and on the origin of cell organelles.

<span class="mw-page-title-main">Variant surface glycoprotein</span>

Variant surface glycoprotein (VSG) is a ~60kDa protein which densely packs the cell surface of protozoan parasites belonging to the genus Trypanosoma. This genus is notable for their cell surface proteins. They were first isolated from Trypanosoma brucei in 1975 by George Cross. VSG allows the trypanosomatid parasites to evade the mammalian host's immune system by extensive antigenic variation. They form a 12–15 nm surface coat. VSG dimers make up ~90% of all cell surface protein and ~10% of total cell protein. For this reason, these proteins are highly immunogenic and an immune response raised against a specific VSG coat will rapidly kill trypanosomes expressing this variant. However, with each cell division there is a possibility that the progeny will switch expression to change the VSG that is being expressed. VSG has no prescribed biochemical activity.

Phytomonas is a genus of trypanosomatids that infect plant species. Initially described using existing genera in the family Trypanosomatidae, such as Trypanosoma or Leishmania, the nomenclature of Phytomonas was proposed in 1909 in light of their distinct hosts and morphology. When the term was originally coined, no strict criterion was followed, and the term was adopted by the scientific community to describe flagellate protozoa in plants as a matter of convenience. Members of the taxon are globally distributed and have been discovered in members of over 24 plant families. Of these 24, the two main families that are infected by Phytomonas are Euphorbiaceae and Asclepiadiacae. These protists have been found in hosts between 50° latitude North and South, and thus they can be found on all continents save for Antarctica.

<i>Strigomonas culicis</i> Species of parasitic flagellate protist in the Kinetoplastea class

Strigomonas culicis is a protist and member of flagellated trypanosomatids. It is an obligate parasite in the gastrointestinal tract of mosquito, and is in turn a host to symbiotic bacteria. It maintains strict mutualistic relationship with the bacteria as a sort of cell organelle (endosymbiont) so that it cannot lead an independent life without the bacteria. Along with Angomonas deanei, S. culicis is researched as model organism for the evolution of symbiotic relationsships with intracellular bacteria.

Novymonas esmeraldas is a protist and member of flagellated trypanosomatids. It is an obligate parasite in the gastrointestinal tract of a bug, and is in turn a host to symbiotic bacteria. It maintains strict mutualistic relationship with the bacteria as a sort of cell organelle (endosymbiont) so that it cannot lead an independent life without the bacteria. Its discovery in 2016 suggests that it is a good model in the evolution of prokaryotes into eukaryotes by symbiogenesis. The endosymbiotic bacterium was identified as member of the genus Pandoraea.

References

  1. Podlipaev S (May 2001). "The more insect trypanosomatids under study-the more diverse Trypanosomatidae appears". International Journal for Parasitology . 31 (5–6): 648–52. doi:10.1016/S0020-7519(01)00139-4. PMID   11334958.
  2. Simpson AG, Stevens JR, Lukes J; Stevens; Lukes (April 2006). "The evolution and diversity of kinetoplastid flagellates". Trends in Parasitology . 22 (4): 168–74. doi:10.1016/j.pt.2006.02.006. PMID   16504583.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. "Trypanosomiasis, human African (sleeping sickness)". www.who.int. Archived from the original on 20 April 2018. Retrieved 14 May 2020.
  4. Rêgo, Felipe D.; Soares, Rodrigo Pedro (2021). "Lutzomyia longipalpis: an update on this sand fly vector". Anais da Academia Brasileira de Ciências. 93 (3). doi: 10.1590/0001-37652021XXXX . hdl: 11336/166702 . PMID   33950136. S2CID   233743387. e20200254.
    This review cites this research.
    Abbasi, Ibrahim; Trancoso Lopo de Queiroz, Artur; Kirstein, Oscar David; Nasereddin, Abdelmajeed; Horwitz, Ben Zion; Hailu, Asrat; Salah, Ikram; Mota, Tiago Feitosa; Fraga, Deborah Bittencourt Mothé (2018-11-13). "Plant-feeding phlebotomine sand flies, vectors of leishmaniasis, prefer Cannabis sativa". Proceedings of the National Academy of Sciences of the United States of America. 115 (46): 11790–11795. Bibcode:2018PNAS..11511790A. doi: 10.1073/pnas.1810435115 . PMC   6243281 . PMID   30373823. S2CID   53112660.
  5. Poinar, G. (2008). "Lutzomyia adiketis sp. n. (Diptera: Phlebotomidae), a vector of Paleoleishmania neotropicum sp. n. (Kinetoplastida: Trypanosomatidae) in Dominican amber". Parasites & Vectors. 1 (1): 22. doi: 10.1186/1756-3305-1-22 . PMC   2491605 . PMID   18627624.
  6. Poinar, G. (2005). "Triatoma dominicana sp. n. (Hemiptera: Reduviidae: Triatominae), and Trypanosoma antiquus sp. n. (Stercoraria: Trypanosomatidae), the First Fossil Evidence of a Triatomine-Trypanosomatid Vector Association". Vector-Borne and Zoonotic Diseases . 5 (1): 72–81. doi:10.1089/vbz.2005.5.72. PMID   15815152.
  7. Archived 2021-05-12 at the Wayback Machine "A new lineage of trypanosome from Australian vertebrates and terrestrial bloodsucking leeches (Haemadipsidae)"
  8. 1 2 3 Silva Pereira, Sara; Trindade, Sandra; De Niz, Mariana; Figueiredo, Luisa M. (2019). "Tissue tropism in parasitic diseases". Open Biology. 9 (5): 190036. doi:10.1098/rsob.190036. PMC   6544988 . PMID   31088251.
  9. 1 2 Silva, Verônica Santana da; Machado, Carlos Renato (2022). "Sex in protists: A new perspective on the reproduction mechanisms of trypanosomatids". Genetics and Molecular Biology. 45 (3): e20220065. doi:10.1590/1678-4685-GMB-2022-0065. PMC   9552303 . PMID   36218381.
  10. 1 2 3 4 5 Hoare, Cecil A.; Wallace, Franklin G. (1966). "Developmental Stages of Trypanosomatid Flagellates: a New Terminology". Nature . 212 (5068): 1385–6. Bibcode:1966Natur.212.1385H. doi:10.1038/2121385a0. S2CID   4164112.
  11. Merzlyak, Ekaterina; Yurchenko, Vyacheslav; Kolesnikov, Alexander A.; Alexandrov, Kirill; Podlipaev, Sergei A.; Maslov, Dmitri A. (2001-03-01). "Diversity and Phylogeny of Insect Trypanosomatids Based on Small Subunit rRNA Genes: Polyphyly of Leptomonas and Blastocrithidia". The Journal of Eukaryotic Microbiology. 48 (2): 161–169. doi:10.1111/j.1550-7408.2001.tb00298.x. PMID   12095103. S2CID   13880469.
  12. Docampo R, de Souza W, Miranda K, Rohloff P, Moreno SN; De Souza; Miranda; Rohloff; Moreno (March 2005). "Acidocalcisomes — conserved from bacteria to man". Nature Reviews Microbiology . 3 (3): 251–61. doi:10.1038/nrmicro1097. PMID   15738951. S2CID   31935658.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. 1 2 Alves, JM; Serrano, MG; Maia da Silva, F; Voegtly, LJ; Matveyev, AV; Teixeira, MM; Camargo, EP; Buck, GA (2013). "Genome evolution and phylogenomic analysis of Candidatus Kinetoplastibacterium, the betaproteobacterial endosymbionts of Strigomonas and Angomonas". Genome Biology and Evolution (GBE). 5 (2): 338–50. doi: 10.1093/gbe/evt012 . PMC   3590767 . PMID   23345457.
  14. "GTDB - Tree at g__Kinetoplastibacterium". gtdb.ecogenomic.org. Archived from the original on 2022-12-20. Retrieved 2022-12-20.
  15. de Souza, W.; Motta, M. C. (1999). "Endosymbiosis in protozoa of the Trypanosomatidae family". FEMS Microbiology Letters. 173 (1): 1–8. doi: 10.1111/j.1574-6968.1999.tb13477.x . PMID   10220875.