Angomonas deanei

Last updated

Angomonas deanei
Angomonas deanei structure.TIF
Three-dimensional reconstruction of Angomonas deanei containing a bacterial endosymbiont (green) near its nucleus (blue).
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Phylum: Euglenozoa
Class: Kinetoplastea
Order: Trypanosomatida
Family: Trypanosomatidae
Genus: Angomonas
Species:
A. deanei
Binomial name
Angomonas deanei
(Carvalho, 1973)
Teixeira & Camargo, 2011 [1]
Synonyms

Crithidia deaneiCarvalho, 1973

Angomonas deanei is a flagellated trypanosomatid protozoan. As an obligate parasite, it infects the gastrointestinal tract of insects, and is in turn a host to symbiotic bacteria. The bacterial endosymbiont Ca. "Kinetoplastibacterium crithidii" maintains a permanent mutualistic relationship with the protozoan such that it is no longer able to reproduce and survive on its own. [2] The symbiosis, subsequently also discovered in varying degrees in other protists such as Strigomonas culicis, Novymonas esmeraldas, Diplonema japonicum and Diplonema aggregatum are considered as good models for the understanding of the evolution of eukaryotes from prokaryotes, [3] [4] [5] and on the origin of cell organelles (i.e. symbiogenesis). [6] [7]

Contents

The species was first described as Crithidia deanei in 1973 by a Brazilian parasitologist Aurora L. M. Carvalho. A phylogenetic analysis in 2011 revealed that it belongs to the genus Angomonas, thereby becoming Angomonas deanei. The symbiotic bacterium is a member of the β-proteobacterium that descended from the common ancestor with the genus Bordetella , [1] or more likely, Taylorella . [8] The two organisms have depended on each other so much that the bacterium cannot reproduce and the protozoan can no longer infect insects when they are isolated. [9] [10]

Discovery

Angomonas deanei was originally described as Crithidia deanei. In 1973, a Brazilian graduate student Aurora Luiza de Moura Carvalho at the Universidade Federal de Goiás [11] discovered the species from his study of intestinal parasites of the assassin bugs in Goiás. [12] The next year he reported that the bug Zelus leucogrammus from which he discovered was not naturally infected by the protozoan, but it was acquired from other insects. [11] At the same time, a research team at the Universidade de Brasilia reported the biochemical properties and structural details based on transmission electron microscopy. They discovered that it harbours an endosymbiont, describing it as "probably bacterial" that provided the "trypanosomatid essential nutrients." [13] The bacterial nature of the endosymbiont was confirmed in 1977 when it was shown that it could be killed by treating with an antibiotic chloramphenicol, [14] and that it helps the host in synthesising the amino acid arginine from ornithine. [15]

As more structural and molecular details were studied, the distinction of A. deanei from other Crithidia species became more pronounced. In 1991, Maria Auxiliadora de Sousa and Suzana Corte-Real at the Instituto Oswaldo Cruz proposed a new genus Angomonas for the species. [16] [17] Phylogenetic study by Marta M.G. Teixeira and Erney P. Camargo at the University of São Paulo with their collaborators in 2011 validated the new species name A. deanei along with a description of a new related species A. ambiguus, which also contains the same bacterial endosymbiont. [1]

Structure

Ultrastructure and morphology of Angomonas deanei. (a) Transmission electron microscopy of the main cell body showing nucleus (nu) with heterochromatins (ht), kinetoplast (k) and bacterial symbiont (s). (b) Magnified view of the kinetoplast region showing a group of kDNA fibres. (c) Scanning electron microscopy of the protozoans; the projection from each individual is a flagellum. Angomonas deanei.jpg
Ultrastructure and morphology of Angomonas deanei. (a) Transmission electron microscopy of the main cell body showing nucleus (nu) with heterochromatins (ht), kinetoplast (k) and bacterial symbiont (s). (b) Magnified view of the kinetoplast region showing a group of kDNA fibres. (c) Scanning electron microscopy of the protozoans; the projection from each individual is a flagellum.

The body of Angomonas deanei is elliptical in shape, with a prominent tail-like flagellum at its posterior end for locomotion. The bacterial endosymbiont is inside its body and is surrounded by two cell membranes typical of Gram-negative bacteria, but its cell membrane presents unusual features, such as the presence of phosphatidylcholine, a major membrane lipid (atypical of bacterial membranes), and the highly reduced peptidoglycan layer, which shows reduced or absence of rigid cell wall. The cell membrane of the protozoan host contains an 18-domain β-barrel porin, which is a characteristic protein of Gram-negative bacteria, and unusual of eukaryotes. [18] In addition it contains cardiolipin and phosphatidylcholine as the major phospholipids, while sterols are absent. [19] Cardiolipin is a typical lipid of bacterial membranes; phosphatidylcholine, on the other hand, is mostly present in symbiotic prokaryotes of eukaryotic cells. For symbiotic adaptation, the protozoan host has undergone alterations such as reduced paraflagellar rod, which is required for full motility of the bacterial flagella. Yet the paraflagellar rod gene PFR1 is fully functional. [20] It also lacks introns and transcription of long polycistronic mRNAs required by other eukaryotes for complex gene activities. [21] Its entire genome is distributed in 29 chromosomes and contains 10,365 protein-coding genes, 59 transfer RNAs, 26 ribosomal RNAs, and 62 noncoding RNAs. [22]

While the protozoan has its separate mitochondria that provide electron transport system for the production of cellular energy, the ATP molecules are produced through its glycosomes. [9] The bacterium is known to provide essential nutrients to the host. It synthesises amino acids, [23] vitamins, [24] nitrogenous bases and haem [25] for the protozoan. Haem is necessary for the growth and development of the protozoan. [21] The bacterium also provides the enzymes for urea cycle which are absent in the host. In return the protozoan offers its enzymes for the complete metabolic pathways for the biosynthesis of amino acids, lipids and nucleotides, that are absent in the bacterium. [26] The bacterium has highly reduced genome compared to its related bacterial species, lacking many genes essential for its survival. [21] Phosphatidylinositol, a membrane lipid required for cell-cell interaction in the bacteria is also synthesised by the protozoan. [27] The bacterium also depends on the host for ATP molecules for its energetic functions. Thus, the two organisms intimately share and exchange their metabolic systems. [9]

When the bacterium is killed using antibiotics, the protozoan can no longer infect insects, [10] due to the altered glycosylphosphatidylinositol (gp63) in the protozoan flagellum. [28] A bacterium-less protozoan exhibits reduced gene activities; particularly those involved in oxidation-reduction process, ATP hydrolysis-coupled proton transport and glycolysis are stopped. [29] The structural components are also altered including cell surface, carbohydrate composition, paraflagellar rod and kinetoplast. [30]

Parasitism

Angomonas deanei was originally discovered from the digestive tract of the bug Zelus leucogrammus . But it was realised that the bugs are not heavily infected and were likely transmitted from other insects. [11] It is now known to infect different mosquitos, [31] and flies, [32] and capable of infecting mammalian fibroblast cells under experimental conditions. [33] [34] Transmission from one insect to another occurs between adults (horizontal transmission) only, and the protozoan cannot fix itself in the hindgut of insect larvae. The flagellum is used as an adhesive organ that gets attached near the rectal glands and sometime directly on the surface of the rectal glands. [35]

Reproduction

Angomonas deanei (light-blue is its nucleus) coordinated division with its symbiotic bacterium (green)

The cellular reproduction shows a strong synergistic adaptation between the bacterium and the protozoan. The bacterium divides first, followed by the protozoan organelles, and lastly the nucleus. As a result the daughter protozoans contains exactly the same copies of the organelles and the bacterial endosymbiont. [36] The entire reproduction takes about 6 hours in an ideal culture medium; thus, a single protozoan is able to produce 256 daughter cells in a day, though it can differ slightly under its natural habitat. [21]

The endosymbiont and evolution

Symbiotic bacteria in the trypanosomatid protozoa are descended from a β-proteobacterium. [37] With A. deanei, the bacteria Ca. " Kinetoplastibacterium crithidii" have co-evolved in a mutualistic relationship characterised by intense metabolic exchanges. The endosymbiont contains enzymes and metabolic precursors that complete essential biosynthetic pathways of the host protozoan, such as those in the urea cycle and the production of haemin and polyamine. [38]

The symbiotic bacterium belongs to β-proteobacterium family Alcaligenaceae. Based on the 16S rRNA gene sequences, it is known that it originated from a common ancestor with the one in Strigomonas culicis . The two groups are assumed to enter two different host protozoans to evolve into different species. Hence the scientific name ( Candidatus ) Kinetoplastibacterium crithidii was given to the bacterium. [39] Although it was initially proposed that the bacterium evolved from a common ancestor with members of Bordetella , [1] however, detailed phylogenomic analysis revealed that it is more closely related to members of the genus Taylorella . [8] Re-analysis by GTDB finds the genus sister to Proftella , a symbiont of Diaphorina citri . [40]

Related Research Articles

<i>Leishmania</i> Genus of parasitic flagellate protist

Leishmania is a parasitic protozoan, a single-celled organism of the genus Leishmania that is responsible for the disease leishmaniasis. They are spread by sandflies of the genus Phlebotomus in the Old World, and of the genus Lutzomyia in the New World. At least 93 sandfly species are proven or probable vectors worldwide. Their primary hosts are vertebrates; Leishmania commonly infects hyraxes, canids, rodents, and humans.

<span class="mw-page-title-main">Symbiogenesis</span> Evolutionary theory holding that eukaryotic organelles evolved through symbiosis with prokaryotes

Symbiogenesis is the leading evolutionary theory of the origin of eukaryotic cells from prokaryotic organisms. The theory holds that mitochondria, plastids such as chloroplasts, and possibly other organelles of eukaryotic cells are descended from formerly free-living prokaryotes taken one inside the other in endosymbiosis. Mitochondria appear to be phylogenetically related to Rickettsiales bacteria, while chloroplasts are thought to be related to cyanobacteria.

<span class="mw-page-title-main">Trypanosomatida</span> Flagellate kinetoplastid excavate order

Trypanosomatida is a group of kinetoplastid unicellular organisms distinguished by having only a single flagellum. The name is derived from the Greek trypano (borer) and soma (body) because of the corkscrew-like motion of some trypanosomatid species. All members are exclusively parasitic, found primarily in insects. A few genera have life-cycles involving a secondary host, which may be a vertebrate, invertebrate or plant. These include several species that cause major diseases in humans. Some trypanosomatida are intracellular parasites, with the important exception of Trypanosoma brucei.

<i>Buchnera aphidicola</i> Species of bacterium

Buchnera aphidicola, a member of the Pseudomonadota and the only species in the genus Buchnera, is the primary endosymbiont of aphids, and has been studied in the pea aphid, Acyrthosiphon pisum. Buchnera is believed to have had a free-living, Gram-negative ancestor similar to a modern Enterobacterales, such as Escherichia coli. Buchnera is 3 µm in diameter and has some of the key characteristics of its Enterobacterales relatives, such as a Gram-negative cell wall. However, unlike most other Gram-negative bacteria, Buchnera lacks the genes to produce lipopolysaccharides for its outer membrane. The long association with aphids and the limitation of crossover events due to strictly vertical transmission has seen the deletion of genes required for anaerobic respiration, the synthesis of amino sugars, fatty acids, phospholipids, and complex carbohydrates. This has resulted not only in one of the smallest known genomes of any living organism, but also one of the most genetically stable.

Mycoplasma hyopneumoniae is a species of bacteria known to cause the disease porcine enzootic pneumonia, a highly contagious and chronic disease affecting pigs. As with other mollicutes, M. hyopneumoniae is small in size (400–1200 nm), has a small genome and lacks a cell wall. It is difficult to grow in laboratories due to its complex nutritional requirements and the high chances of contamination associated with mycoplasma culture. To successfully grow the bacterium, an environment of 5–10% carbon dioxide is required, and the medium should demonstrate an acid colour shift.

Intracellular parasites are microparasites that are capable of growing and reproducing inside the cells of a host. They are also called intracellular pathogens.

Symbiotic bacteria are bacteria living in symbiosis with another organism or each other. For example, rhizobia living in root nodules of legumes provide nitrogen fixing activity for these plants.

<i>Rhizopus microsporus</i> Species of fungus

Rhizopus microsporus is a fungal plant pathogen infecting maize, sunflower, and rice.

Crithidia fasciculata is a species of parasitic excavates. C. fasciculata, like other species of Crithidia have a single host life cycle with insect host, in the case of C. fasciculata this is the mosquito. C. fasciculata have low host species specificity and can infect many species of mosquito.

<span class="mw-page-title-main">Trophosome</span> Organ containing endosymbionts

A trophosome is a highly vascularised organ found in some animals that houses symbiotic bacteria that provide food for their host. Trophosomes are contained by the coelom of the vestimentiferan tube worms and in the body of symbiotic flatworms of the genus Paracatenula.

<i>Crithidia luciliae</i> Species of parasitic flagellate protist in the Kinetoplastea class

Crithidia luciliae is a flagellate parasite that uses the housefly, Musca domestica, as a host. As part of the family of Trypanosomatidae, it is characterised by the presence of a kinetoplast, a complex network of interlocking circular double-stranded DNA (dsDNA) molecules. The presence of the kinetoplast makes this organism important in the diagnosis of systemic lupus erythamatosus (SLE). By using C. luciliae as a substrate for immunofluorescence, the organelle can be used to detect anti-dsDNA antibodies, a common feature of the disease.

<span class="mw-page-title-main">Marine microbial symbiosis</span>

Microbial symbiosis in marine animals was not discovered until 1981. In the time following, symbiotic relationships between marine invertebrates and chemoautotrophic bacteria have been found in a variety of ecosystems, ranging from shallow coastal waters to deep-sea hydrothermal vents. Symbiosis is a way for marine organisms to find creative ways to survive in a very dynamic environment. They are different in relation to how dependent the organisms are on each other or how they are associated. It is also considered a selective force behind evolution in some scientific aspects. The symbiotic relationships of organisms has the ability to change behavior, morphology and metabolic pathways. With increased recognition and research, new terminology also arises, such as holobiont, which the relationship between a host and its symbionts as one grouping. Many scientists will look at the hologenome, which is the combined genetic information of the host and its symbionts. These terms are more commonly used to describe microbial symbionts.

The Scotokaryotes (Cavalier-Smith) is a proposed basal Neokaryote clade as sister of the Diaphoretickes. Basal Scotokaryote groupings are the Metamonads, the Malawimonas and the Podiata. In this phylogeny the Discoba are sometimes seen as paraphyletic and basal Eukaryotes.

<span class="mw-page-title-main">Symbiosome</span>

A symbiosome is a specialised compartment in a host cell that houses an endosymbiont in a symbiotic relationship.

<i>Strigomonas culicis</i> Species of parasitic flagellate protist in the Kinetoplastea class

Strigomonas culicis is a protist and member of flagellated trypanosomatids. It is an obligate parasite in the gastrointestinal tract of mosquito, and is in turn a host to symbiotic bacteria. It maintains strict mutualistic relationship with the bacteria as a sort of cell organelle (endosymbiont) so that it cannot lead an independent life without the bacteria. Along with Angomonas deanei, S. culicis is researched as model organism for the evolution of symbiotic relationsships with intracellular bacteria.

Novymonas esmeraldas is a protist and member of flagellated trypanosomatids. It is an obligate parasite in the gastrointestinal tract of a bug, and is in turn a host to symbiotic bacteria. It maintains strict mutualistic relationship with the bacteria as a sort of cell organelle (endosymbiont) so that it cannot lead an independent life without the bacteria. Its discovery in 2016 suggests that it is a good model in the evolution of prokaryotes into eukaryotes by symbiogenesis. The endosymbiotic bacterium was identified as member of the genus Pandoraea.

Angomonas desouzai is a parasitic protist from the order Trypanosomatida.

Strigomonas oncopelti is a parasitic protist from the order Trypanosomatida.

Strigomonadinae is a subfamily of protists in the order Trypanosomatida. All species in this taxon harbor endodymbiontic bacteria of the Candidatus Kinetoplastibacterium genus.

Angomonas ambiguus is a parasitic protist from the order Trypanosomatida.

References

  1. 1 2 3 4 Teixeira MM, Borghesan TC, Ferreira RC, Santos MA, Takata CS, Campaner M, Nunes VL, Milder RV, de Souza W, Camargo EP (2011). "Phylogenetic validation of the genera Angomonas and Strigomonas of trypanosomatids harboring bacterial endosymbionts with the description of new species of trypanosomatids and of proteobacterial symbionts". Protist. 162 (3): 503–524. doi:10.1016/j.protis.2011.01.001. PMID   21420905.
  2. Labinfo. "Angomonas deanei". labinfo.lncc.br. National Laboratory of Scientific Computation of the Ministry of Science and Technology, Brazil. Archived from the original on 2013-07-30. Retrieved 2013-07-08.
  3. de Souza, Silvana Sant´Anna; Catta-Preta, Carolina Moura; Alves, João Marcelo P.; Cavalcanti, Danielle P.; Teixeira, Marta M. G.; Camargo, Erney P.; De Souza, Wanderley; Silva, Rosane; Motta, Maria Cristina M. (2017). Yurchenko, Vyacheslav (ed.). "Expanded repertoire of kinetoplast associated proteins and unique mitochondrial DNA arrangement of symbiont-bearing trypanosomatids". PLOS ONE. 12 (11): e0187516. Bibcode:2017PLoSO..1287516D. doi: 10.1371/journal.pone.0187516 . PMC   5683618 . PMID   29131838.
  4. Motta, Maria Cristina Machado; Martins, Allan Cezar de Azevedo; de Souza, Silvana Sant'Anna; Catta-Preta, Carolina Moura Costa; Silva, Rosane; Klein, Cecilia Coimbra; de Almeida, Luiz Gonzaga Paula; de Lima Cunha, Oberdan; Ciapina, Luciane Prioli; Brocchi, Marcelo; Colabardini, Ana Cristina (2013). "Predicting the proteins of Angomonas deanei, Strigomonas culicis and their respective endosymbionts reveals new aspects of the trypanosomatidae family". PLOS ONE. 8 (4): e60209. Bibcode:2013PLoSO...860209M. doi: 10.1371/journal.pone.0060209 . PMC   3616161 . PMID   23560078.
  5. Tashyreva, Daria; Prokopchuk, Galina; Votýpka, Jan; Yabuki, Akinori; Horák, Aleš; Lukeš, Julius (2018-05-02). Heitman, Joseph (ed.). "Life Cycle, Ultrastructure, and Phylogeny of New Diplonemids and Their Endosymbiotic Bacteria". mBio. 9 (2). João M. P. Alves, John McCutcheon. doi:10.1128/mBio.02447-17. ISSN   2161-2129. PMC   5845003 . PMID   29511084.
  6. Kostygov, Alexei Y.; Dobáková, Eva; Grybchuk-Ieremenko, Anastasiia; Váhala, Dalibor; Maslov, Dmitri A.; Votýpka, Jan; Lukeš, Julius; Yurchenko, Vyacheslav (2016-03-15). "Novel Trypanosomatid-Bacterium Association: Evolution of Endosymbiosis in Action". mBio. 7 (2): e01985. doi:10.1128/mBio.01985-15. ISSN   2150-7511. PMC   4807368 . PMID   26980834.
  7. Husnik, Filip; Keeling, Patrick J (2019). "The fate of obligate endosymbionts: reduction, integration, or extinction". Current Opinion in Genetics & Development. 58–59: 1–8. doi:10.1016/j.gde.2019.07.014. PMID   31470232. S2CID   201731819.
  8. 1 2 Alves JM, Serrano MG, Maia da Silva F, Voegtly LJ, Matveyev AV, Teixeira MM, Camargo EP, Buck GA (2013). "Genome evolution and phylogenomic analysis of Candidatus Kinetoplastibacterium, the betaproteobacterial endosymbionts of Strigomonas and Angomonas". Genome Biol Evol. 5 (2): 338–350. doi:10.1093/gbe/evt012. PMC   3590767 . PMID   23345457.
  9. 1 2 3 Motta, M. C.; Soares, M. J.; Attias, M.; Morgado, J.; Lemos, A. P.; Saad-Nehme, J.; Meyer-Fernandes, J. R.; De Souza, W. (1997). "Ultrastructural and biochemical analysis of the relationship of Crithidia deanei with its endosymbiont". European Journal of Cell Biology. 72 (4): 370–377. PMID   9127737.
  10. 1 2 d'Avila-Levy CM, Silva BA, Hayashi EA, Vermelho AB, Alviano CS, Saraiva EM, Branquinha MH, Santos AL (2005). "Influence of the endosymbiont of Blastocrithidia culicis and Crithidia deanei on the glycoconjugate expression and on Aedes aegypti interaction". FEMS Microbiol Lett. 252 (2): 279–286. doi: 10.1016/j.femsle.2005.09.012 . PMID   16216441.
  11. 1 2 3 Carvalho, A. L.; Deane, M. P. (1974). "Trypanosomatidae isolated from Zelus leucogrammus (Perty, 1834) (Hemiptera, Reduviidae), with a discussion on flagellates of insectivorous bugs". The Journal of Protozoology. 21 (1): 5–8. doi:10.1111/j.1550-7408.1974.tb03605.x. PMID   4594242.
  12. Carvalho, Aurora Luiza de Moura (1973). "Estudos sobre a posição sistemática, a biologia e a transmissào de tripanosomatídeos encontrados em Zelus leucogrammus (Perty, 1834) (Hemiptera, Reduviidae)". Rev. Pat. Trop. (in Portuguese). 2 (2): 223–274.
  13. Mundim, Maria Hermelinda; Roitman, Isaac; Hermans, Maria A.; Kitajima, Elliot W. (1974). "Simple Nutrition of Crithidia deanei , a Reduviid Trypanosomatid with an Endosymbiont*". The Journal of Protozoology. 21 (4): 518–521. doi:10.1111/j.1550-7408.1974.tb03691.x. PMID   4278787.
  14. Mundim, Maria Hermelinda; Roitman, Isaac (1977). "Extra Nutritional Requirements of Artificially Aposymbiotic Crithidia deanei *". The Journal of Protozoology. 24 (2): 329–331. doi:10.1111/j.1550-7408.1977.tb00988.x.
  15. Camargo, E. Plessmann; Freymuller, Edna (1977). "Endosymbiont as supplier of ornithine carbamoyltransferase in a trypanosomatid". Nature. 270 (5632): 52–53. Bibcode:1977Natur.270...52C. doi:10.1038/270052a0. PMID   927516. S2CID   4210642.
  16. Sousa, M.A. (1991). "Postnuclear kinetoplast in choanomastigotes of Crithidia deanei Carvalho, 1973. Proposal of a new genus". Revista do Instituto de Medicina Tropical de São Paulo. 33: S8.
  17. Teixeira, Marta M. G.; Takata, Carmen S. A.; Conchon, Ivete; Campaner, Marta; Camargo, Erney P. (1997). "Ribosomal and kDNA Markers Distinguish Two Subgroups of Herpetomonas among Old Species and New Trypanosomatids Isolated from Flies". The Journal of Parasitology. 83 (1): 58–65. doi:10.2307/3284317. JSTOR   3284317. PMID   9057697.
  18. Andrade Ida S, Vianez-Júnior JL, Goulart CL, Homblé F, Ruysschaert JM, Almeida von Krüger WM, Bisch PM, de Souza W, Mohana-Borges R, Motta MC (2011). "Characterization of a porin channel in the endosymbiont of the trypanosomatid protozoan Crithidia deanei". Microbiology. 157 (Pt 10): 2818–2830. doi: 10.1099/mic.0.049247-0 . PMID   21757490.
  19. Palmié-Peixoto IV, Rocha MR, Urbina JA, de Souza W, Einicker-Lamas M, Motta MC (2006). "Effects of sterol biosynthesis inhibitors on endosymbiont-bearing trypanosomatids". FEMS Microbiol Lett. 255 (1): 33–42. doi: 10.1111/j.1574-6968.2005.00056.x . PMID   16436059.
  20. Gadelha C, Wickstead B, de Souza W, Gull K, Cunha-e-Silva N (2005). "Cryptic paraflagellar rod in endosymbiont-containing kinetoplastid protozoa". Eukaryot Cell. 4 (3): 516–525. doi:10.1128/EC.4.3.516-525.2005. PMC   1087800 . PMID   15755914.
  21. 1 2 3 4 Morales, Jorge; Kokkori, Sofia; Weidauer, Diana; Chapman, Jarrod; Goltsman, Eugene; Rokhsar, Daniel; Grossman, Arthur R.; Nowack, Eva C. M. (2016). "Development of a toolbox to dissect host-endosymbiont interactions and protein trafficking in the trypanosomatid Angomonas deanei". BMC Evolutionary Biology. 16 (1): 247. doi: 10.1186/s12862-016-0820-z . ISSN   1471-2148. PMC   5106770 . PMID   27835948.
  22. Davey, John W; Catta-Preta, Carolina M C; James, Sally; Forrester, Sarah; Motta, Maria Cristina M; Ashton, Peter D; Mottram, Jeremy C (2021). Andrews, B (ed.). "Chromosomal assembly of the nuclear genome of the endosymbiont-bearing trypanosomatid Angomonas deanei". G3: Genes, Genomes, Genetics. 11 (1): jkaa018. doi:10.1093/g3journal/jkaa018. ISSN   2160-1836. PMC   8022732 . PMID   33561222.
  23. Alves, João MP; Klein, Cecilia C; da Silva, Flávia; Costa-Martins, André G; Serrano, Myrna G; Buck, Gregory A; Vasconcelos, Ana Tereza R; Sagot, Marie-France; Teixeira, Marta MG; Motta, Maria Cristina M; Camargo, Erney P (2013). "Endosymbiosis in trypanosomatids: the genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers". BMC Evolutionary Biology. 13 (1): 190. doi: 10.1186/1471-2148-13-190 . PMC   3846528 . PMID   24015778.
  24. Klein, Cecilia C.; Alves, João M. P.; Serrano, Myrna G.; Buck, Gregory A.; Vasconcelos, Ana Tereza R.; Sagot, Marie-France; Teixeira, Marta M. G.; Camargo, Erney P.; Motta, Maria Cristina M.; Parkinson, John (2013). "Biosynthesis of vitamins and cofactors in bacterium-harbouring trypanosomatids depends on the symbiotic association as revealed by genomic analyses". PLOS ONE. 8 (11): e79786. Bibcode:2013PLoSO...879786K. doi: 10.1371/journal.pone.0079786 . PMC   3833962 . PMID   24260300.
  25. Alves, João M. P.; Voegtly, Logan; Matveyev, Andrey V.; Lara, Ana M.; da Silva, Flávia Maia; Serrano, Myrna G.; Buck, Gregory A.; Teixeira, Marta M. G.; Camargo, Erney P. (2011). "Identification and phylogenetic analysis of heme synthesis genes in trypanosomatids and their bacterial endosymbionts". PLOS ONE. 6 (8): e23518. Bibcode:2011PLoSO...623518A. doi: 10.1371/journal.pone.0023518 . PMC   3154472 . PMID   21853145.
  26. Motta MC, Martins AC, de Souza SS, Catta-Preta CM, Silva R, Klein CC, de Almeida LG, de Lima Cunha O, Ciapina LP, Brocchi M, Colabardini AC, de Araujo Lima B, Machado CR, de Almeida Soares CM, Probst CM, de Menezes CB, Thompson CE, Bartholomeu DC, Gradia DF, Pavoni DP, Grisard EC, Fantinatti-Garboggini F, Marchini FK, Rodrigues-Luiz GF, Wagner G, Goldman GH, Fietto JL, Elias MC, Goldman MH, Sagot MF, Pereira M, Stoco PH, de Mendonça-Neto RP, Teixeira SM, Maciel TE, de Oliveira Mendes TA, Ürményi TP, de Souza W, Schenkman S, de Vasconcelos AT (2013). "Predicting the proteins of Angomonas deanei, Strigomonas culicis and their respective endosymbionts reveals new aspects of the trypanosomatidae family". PLOS ONE. 8 (4): e60209. Bibcode:2013PLoSO...860209M. doi: 10.1371/journal.pone.0060209 . PMC   3616161 . PMID   23560078.
  27. de Azevedo-Martins, Allan C; Alves, João MP; Garcia de Mello, Fernando; Vasconcelos, Ana Tereza R; de Souza, Wanderley; Einicker-Lamas, Marcelo; Motta, Maria Cristina M (2015). "Biochemical and phylogenetic analyses of phosphatidylinositol production in Angomonas deanei, an endosymbiont-harboring trypanosomatid". Parasites & Vectors. 8 (1): 247. doi: 10.1186/s13071-015-0854-x . PMC   4424895 . PMID   25903782.
  28. d'Avila-Levy CM, Santos LO, Marinho FA, Matteoli FP, Lopes AH, Motta MC, Santos AL, Branquinha MH (2008). "Crithidia deanei: influence of parasite gp63 homologue on the interaction of endosymbiont-harboring and aposymbiotic strains with Aedes aegypti midgut". Exp Parasitol. 118 (3): 345–353. doi:10.1016/j.exppara.2007.09.007. PMID   17945218.
  29. Penha, Luciana Loureiro; Hoffmann, Luísa; Souza, Silvanna Sant'Anna de; Martins, Allan Cézar de Azevedo; Bottaro, Thayane; Prosdocimi, Francisco; Faffe, Débora Souza; Motta, Maria Cristina Machado; Ürményi, Turán Péter; Silva, Rosane (2016). "Symbiont modulates expression of specific gene categories in Angomonas deanei". Memórias do Instituto Oswaldo Cruz. 111 (11): 686–691. doi:10.1590/0074-02760160228. PMC   5125052 . PMID   27706380.
  30. Souza, Wanderley; Motta, Maria Cristina Machado (1999). "Endosymbiosis in protozoa of the Trypanosomatidae family". FEMS Microbiology Letters. 173 (1): 1–8. doi: 10.1111/j.1574-6968.1999.tb13477.x . ISSN   0378-1097. PMID   10220875.
  31. D'Avila-Levy, Claudia M.; Silva, Bianca A.; Hayashi, Elize A.; Vermelho, Alane B.; Alviano, Celuta S.; Saraiva, Elvira M.B.; Branquinha, Marta H.; Santos, André L.S. (2005). "Influence of the endosymbiont of Blastocrithidia culicis and Crithidia deanei on the glycoconjugate expression and on Aedes aegypti interaction". FEMS Microbiology Letters. 252 (2): 279–286. doi: 10.1016/j.femsle.2005.09.012 . PMID   16216441.
  32. Borghesan, Tarcilla C.; Campaner, Marta; Matsumoto, Tania E.; Espinosa, Omar A.; Razafindranaivo, Victor; Paiva, Fernando; Carranza, Julio C.; Añez, Nestor; Neves, Luis; Teixeira, Marta M. G.; Camargo, Erney P. (2018). "Genetic Diversity and Phylogenetic Relationships of Coevolving Symbiont-Harboring Insect Trypanosomatids, and Their Neotropical Dispersal by Invader African Blowflies (Calliphoridae)". Frontiers in Microbiology. 9: 131. doi: 10.3389/fmicb.2018.00131 . PMC   5808337 . PMID   29467742.
  33. Santos, Dilvani O.; Bourguignon, Saulo C.; Castro, Helena Carla; Silva, Jonatan S.; Franco, Leonardo S.; Hespanhol, Renata; Soares, Maurilio J.; Corte-Real, Suzana (2004). "Infection of Mouse Dermal Fibroblasts by the Monoxenous Trypanosomatid Protozoa Crithidia deanei and Herpetomonas roitmani". The Journal of Eukaryotic Microbiology. 51 (5): 570–574. doi:10.1111/j.1550-7408.2004.tb00293.x. PMID   15537092. S2CID   5830694.
  34. Matteoli, Filipe P.; d’Avila-Levy, Claudia M.; Santos, Lívia O.; Barbosa, Gleyce M.; Holandino, Carla; Branquinha, Marta H.; Santos, André L.S. (2009). "Roles of the endosymbiont and leishmanolysin-like molecules expressed by Crithidia deanei in the interaction with mammalian fibroblasts". Experimental Parasitology. 121 (3): 246–253. doi:10.1016/j.exppara.2008.11.011. PMID   19070618.
  35. Ganyukova, Anna I.; Malysheva, Marina N.; Frolov, Alexander O. (2020). "Life cycle, ultrastructure and host-parasite relationships of Angomonas deanei (Kinetoplastea: Trypanosomatidae) in the blowfly Lucilia sericata (Diptera: Calliphoridae)" (PDF). Protistology. 14 (4): 204–218. doi: 10.21685/1680-0826-2020-14-4-2 .
  36. Motta MC, Catta-Preta CM, Schenkman S, de Azevedo Martins AC, Miranda K, de Souza W, Elias MC (2010). "The bacterium endosymbiont of Crithidia deanei undergoes coordinated division with the host cell nucleus". PLOS ONE. 5 (8): e12415. Bibcode:2010PLoSO...512415M. doi: 10.1371/journal.pone.0012415 . PMC   2932560 . PMID   20865129.
  37. Du Y, McLaughlin G, Chang KP (1994). "16S ribosomal DNA sequence identities of beta-proteobacterial endosymbionts in three Crithidia species". Journal of Bacteriology. 176 (10): 3081–3084. doi:10.1128/jb.176.10.3081-3084.1994. PMC   205468 . PMID   8188611.
  38. Frossard ML, Seabra SH, DaMatta RA, de Souza W, de Mello FG, Machado Motta MC (2006). "An endosymbiont positively modulates ornithine decarboxylase in host trypanosomatids". Biochem Biophys Res Commun. 343 (2): 443–449. doi:10.1016/j.bbrc.2006.02.168. PMID   16546131.
  39. Du Y, Maslov DA, Chang KP (1994). "Monophyletic origin of beta-division proteobacterial endosymbionts and their coevolution with insect trypanosomatid protozoa Blastocrithidia culicis and Crithidia spp". Proc Natl Acad Sci U S A. 91 (18): 8437–8441. Bibcode:1994PNAS...91.8437D. doi: 10.1073/pnas.91.18.8437 . PMC   44621 . PMID   7521530.
  40. "GTDB - Tree at g__Kinetoplastibacterium". gtdb.ecogenomic.org.