Sterol

Last updated
Sterol
Sterol.svg
Names
IUPAC name
2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17-hexadecahydro-1H-cyclopenta[a]phenanthren-3-ol
Other names
Hexadecahydro-3H-cyclopenta[a]phenanthrene-3-ol
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
KEGG
PubChem CID
  • InChI=1S/C17H28O/c18-13-6-9-15-12(10-13)5-8-16-14-3-1-2-11(14)4-7-17(15)16/h11-18H,1-10H2
    Key: FPXSXMFOYWRHDX-UHFFFAOYSA-N
  • Gonan-3-ol:InChI=1S/C17H28O/c18-13-6-9-15-12(10-13)5-8-16-14-3-1-2-11(14)4-7-17(15)16/h11-18H,1-10H2/t11-,12?,13?,14+,15-,16-,17+/m0/s1
    Key: FPXSXMFOYWRHDX-BBLQPCNESA-N
  • C1CC2CCC3C4CCC(CC4CCC3C2C1)O
  • Gonan-3-ol:OC1CC2[C@@]([C@@]3([C@]([C@]4([C@](CC3)(CCC4)[H])[H])(CC2)[H])[H])(CC1)[H]
Properties
C17H28O
Molar mass 248.410 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Sterol is an organic compound [1] with formula C
17
H
28
O
, whose molecule is derived from that of gonane by replacement of a hydrogen atom on C3 position by a hydroxyl group. It is therefore an alcohol of gonane. More generally, any compounds that contain the gonane structure, additional functional groups, and/or modified ring systems derived from gonane are called steroids. Therefore, sterols are a subgroup of the steroids. They occur naturally in most eukaryotes, including plants, animals, and fungi, and can also be produced by some bacteria (however likely with different functions). [2] [3] The most familiar type of animal sterol is cholesterol, which is vital to cell membrane structure, and functions as a precursor to fat-soluble vitamins and steroid hormones.

Contents

While technically alcohols, sterols are classified by biochemists as lipids (fats in the broader sense of the term).

The gonane skeleton, with the IUPAC recommended numbering of the carbon atoms Steran num ABCD.svg
The gonane skeleton, with the IUPAC recommended numbering of the carbon atoms

Types

Phytosterols

Phytosterols are sterols naturally found in plants. Notable examples of phytosterols include campesterol, sitosterol, and stigmasterol.

Zoosterols

Zoosterols are sterols found in animals. The most significant zoosterol is cholesterol.

Mycosterols

Sterols found in fungi are called mycosterols. A common example is ergosterol, a mycosterol present in the cell membrane of fungi, where it serves a role similar to cholesterol in animal cells.

Role in biochemistry

Sterols and related compounds play essential roles in the physiology of eukaryotic organisms, and are essential for normal physiology of plants, animals, and fungi. [4] For example, cholesterol forms part of the cellular membrane in animals, where it affects the cell membrane's fluidity and serves as secondary messenger in developmental signaling. In humans and other animals, corticosteroids such as cortisol act as signaling compounds in cellular communication and general metabolism. Sterols are common components of human skin oils. [5]

Phytosterols as a nutritional supplement

Phytosterols, more commonly known as plant sterols, have been shown in clinical trials to block cholesterol absorption sites in the human intestine, thus helping to reduce cholesterol absorption in humans. [6] They are currently approved by the U.S. Food and Drug Administration for use as a food supplement; however, there is some concern that they may block absorption not only of cholesterol, but of other important nutrients as well. At present, the American Heart Association has recommended that supplemental plant sterols be taken only by those diagnosed with elevated cholesterol, and has particularly recommended that they not be taken by pregnant women or nursing mothers. [7] Preliminary research has shown that phytosterols may have anticancer effects. [8]

Chemical classification and structure

Sterols are a subgroup of steroids with a hydroxyl group at the 3-position of the A-ring. [9] They are amphipathic lipids synthesized from acetyl-coenzyme A via the HMG-CoA reductase pathway. The overall molecule is quite flat. The hydroxyl group on the A ring is polar. The rest of the aliphatic chain is non-polar.

See also

Related Research Articles

<span class="mw-page-title-main">Cholesterol</span> Sterol biosynthesized by all animal cells

Cholesterol is the principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.

<span class="mw-page-title-main">Lipid</span> Substance of biological origin that is soluble in nonpolar solvents

Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins, monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing energy, signaling, and acting as structural components of cell membranes. Lipids have applications in the cosmetic and food industries, and in nanotechnology.

<span class="mw-page-title-main">Steroid</span> Polycyclic organic compound having sterane as a core structure

A steroid is an organic compound with four fused rings arranged in a specific molecular configuration.

<span class="mw-page-title-main">Adolf Windaus</span> German chemist (1876–1959)

Adolf Otto Reinhold Windaus was a German chemist who won a Nobel Prize in Chemistry in 1928 for his work on sterols and their relation to vitamins. He was the doctoral advisor of Adolf Butenandt who also won a Nobel Prize in Chemistry in 1939.

<span class="mw-page-title-main">Ergosterol</span> Chemical compound

Ergosterol (ergosta-5,7,22-trien-3β-ol) is a mycosterol found in cell membranes of fungi and protozoa, serving many of the same functions that cholesterol serves in animal cells. Because many fungi and protozoa cannot survive without ergosterol, the enzymes that synthesize it have become important targets for drug discovery. In human nutrition, ergosterol is a provitamin form of vitamin D2; exposure to ultraviolet (UV) light causes a chemical reaction that produces vitamin D2.

<span class="mw-page-title-main">Squalene</span> Chemical compound

Squalene is an organic compound. It is a triterpene with the formula C30H50. It is a colourless oil, although impure samples appear yellow. It was originally obtained from shark liver oil (hence its name, as Squalus is a genus of sharks). An estimated 12% of bodily squalene in humans is found in sebum. Squalene has a role in topical skin lubrication and protection.

<span class="mw-page-title-main">Stanol ester</span> Class of chemical compounds

Stanol esters is a heterogeneous group of chemical compounds known to reduce the level of low-density lipoprotein (LDL) cholesterol in blood when ingested, though to a much lesser degree than prescription drugs such as statins. The starting material is phytosterols from plants. These are first hydrogenated to give a plant stanol which is then esterified with a mixture of fatty acids also derived from plants. Plant stanol esters are found naturally occurring in small quantities in fruits, vegetables, nuts, seeds, cereals, legumes, and vegetable oils.

<span class="mw-page-title-main">Phytosterol</span> Class of steroids derived from plants

Phytosterols are phytosteroids, similar to cholesterol, that serve as structural components of biological membranes of plants. They encompass plant sterols and stanols. More than 250 sterols and related compounds have been identified. Free phytosterols extracted from oils are insoluble in water, relatively insoluble in oil, and soluble in alcohols.

<span class="mw-page-title-main">Smith–Lemli–Opitz syndrome</span> Recessive genetic condition

Smith–Lemli–Opitz syndrome is an inborn error of cholesterol synthesis. It is an autosomal recessive, multiple malformation syndrome caused by a mutation in the enzyme 7-Dehydrocholesterol reductase encoded by the DHCR7 gene. It causes a broad spectrum of effects, ranging from mild intellectual disability and behavioural problems to lethal malformations.

Sterol esters are a heterogeneous group of chemical compounds. They are created when the hydroxyl group of a sterol and a fatty acid undergo an esterification reaction. They can be found in trace amounts in every cell type but are highly enriched in foam cells and are common components of human skin oil.

<span class="mw-page-title-main">Campesterol</span> Chemical compound

Campesterol is a phytosterol whose chemical structure is similar to that of cholesterol, and is one of the ingredients for E number E499.

<span class="mw-page-title-main">Stigmasterol</span> Chemical compound

Stigmasterol – a plant sterol (phytosterol) – is among the most abundant of plant sterols, having a major function to maintain the structure and physiology of cell membranes. In the European Union, it is a food additive listed with E number E499, and may be used in food manufacturing to increase the phytosterol content, potentially lowering the levels of LDL cholesterol.

<span class="mw-page-title-main">Cycloartenol</span> Chemical compound

Cycloartenol is an important triterpenoid often found in plants. It belongs to the sterol class of steroids. It is the starting point for the synthesis of almost all plant steroids, making them chemically distinct from the steroids of fungi and animals, which are, instead, produced from lanosterol.

β-Sitosterol Chemical compound

β-sitosterol (beta-sitosterol) is one of several phytosterols with chemical structures similar to that of cholesterol. It is a white, waxy powder with a characteristic odor, and is one of the components of the food additive E499. Phytosterols are hydrophobic and soluble in alcohols.

<span class="mw-page-title-main">Cholestane</span> Chemical compound

Cholestane is a saturated tetracyclic triterpene. This 27-carbon biomarker is produced by diagenesis of cholesterol and is one of the most abundant biomarkers in the rock record. Presence of cholestane, its derivatives and related chemical compounds in environmental samples is commonly interpreted as an indicator of animal life and/or traces of O2, as animals are known for exclusively producing cholesterol, and thus has been used to draw evolutionary relationships between ancient organisms of unknown phylogenetic origin and modern metazoan taxa. Cholesterol is made in low abundance by other organisms (e.g., rhodophytes, land plants), but because these other organisms produce a variety of sterols it cannot be used as a conclusive indicator of any one taxon. It is often found in analysis of organic compounds in petroleum.

<span class="mw-page-title-main">Membrane lipid</span> Lipid molecules on cell membrane

Membrane lipids are a group of compounds which form the lipid bilayer of the cell membrane. The three major classes of membrane lipids are phospholipids, glycolipids, and cholesterol. Lipids are amphiphilic: they have one end that is soluble in water ('polar') and an ending that is soluble in fat ('nonpolar'). By forming a double layer with the polar ends pointing outwards and the nonpolar ends pointing inwards membrane lipids can form a 'lipid bilayer' which keeps the watery interior of the cell separate from the watery exterior. The arrangements of lipids and various proteins, acting as receptors and channel pores in the membrane, control the entry and exit of other molecules and ions as part of the cell's metabolism. In order to perform physiological functions, membrane proteins are facilitated to rotate and diffuse laterally in two dimensional expanse of lipid bilayer by the presence of a shell of lipids closely attached to protein surface, called annular lipid shell.

<span class="mw-page-title-main">Sterol 14-demethylase</span> Class of enzymes

In enzymology, a sterol 14-demethylase (EC 1.14.13.70) is an enzyme of the cytochrome P450 (CYP) superfamily. It is any member of the CYP51 family. It catalyzes a chemical reaction such as:

<span class="mw-page-title-main">Tomatine</span> Chemical compound

Tomatine is a glycoalkaloid, found in the stems and leaves of tomato plants, and in the fruits at much lower concentrations. Chemically pure tomatine is a white crystalline solid at standard temperature and pressure.

<span class="mw-page-title-main">C-5 sterol desaturase</span> Class of enzymes

C-5 sterol desaturase is an enzyme that is highly conserved among eukaryotes and catalyzes the dehydrogenation of a C-5(6) bond in a sterol intermediate compound as a step in the biosynthesis of major sterols. The precise structure of the enzyme's substrate varies by species. For example, the human C-5 sterol desaturase oxidizes lathosterol, while its ortholog ERG3 in the yeast Saccharomyces cerevisiae oxidizes episterol.

<span class="mw-page-title-main">Oxidosqualene cyclase</span>

Oxidosqualene cyclases (OSC) are enzymes involved in cyclization reactions of 2,3-oxidosqualene to form sterols or triterpenes.

References

  1. "sterol (CHEBI:15889)". www.ebi.ac.uk. Retrieved 2023-11-04.
  2. Wei JH, Yin X, Welander PV (24 June 2016). "Sterol Synthesis in Diverse Bacteria". Frontiers in Microbiology. 7: 990. doi: 10.3389/fmicb.2016.00990 . PMC   4919349 . PMID   27446030.
  3. Hoshino Y, Gaucher EA (June 2021). "Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis". Proceedings of the National Academy of Sciences of the United States of America. 118 (25): e2101276118. Bibcode:2021PNAS..11801276H. doi: 10.1073/pnas.2101276118 . PMC   8237579 . PMID   34131078.
  4. Luo, Jie; Yang, Hongyuan; Song, Bao-Liang (April 2020). "Mechanisms and regulation of cholesterol homeostasis". Nature Reviews Molecular Cell Biology. 21 (4): 225–245. doi:10.1038/s41580-019-0190-7. ISSN   1471-0080. PMID   31848472. S2CID   209392321.
  5. Lampe MA, Burlingame AL, Whitney J, Williams ML, Brown BE, Roitman E, Elias PM (February 1983). "Human stratum corneum lipids: characterization and regional variations". Journal of Lipid Research. 24 (2): 120–30. doi: 10.1016/S0022-2275(20)38005-6 . PMID   6833889.
  6. Ostlund RE, Racette SB, Stenson WF (June 2003). "Inhibition of cholesterol absorption by phytosterol-replete wheat germ compared with phytosterol-depleted wheat germ". The American Journal of Clinical Nutrition. 77 (6): 1385–9. doi: 10.1093/ajcn/77.6.1385 . PMID   12791614.
  7. "Do we need to be buying plant sterols?" (PDF). Food Magazine. 67: 14. October–December 2004. Archived from the original (PDF) on 15 September 2007. Retrieved 8 August 2008.
  8. Bradford PG, Awad AB (February 2007). "Phytosterols as anticancer compounds". Molecular Nutrition & Food Research. 51 (2): 161–70. doi:10.1002/mnfr.200600164. PMID   17266177.
  9. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, et al. (May 2005). "A comprehensive classification system for lipids". Journal of Lipid Research. 46 (5): 839–61. doi: 10.1194/jlr.E400004-JLR200 . PMID   15722563.

Further reading