Gastrointestinal tract

Last updated
Gastrointestinal tract
Digestive system without labels.svg
Diagram of the gastrointestinal tract in the average human
Details
System Digestive system
Identifiers
Latin tractus digestorius (mouth to anus),
canalis alimentarius (esophagus to large intestine),
canalis gastrointestinales (stomach to large intestine)
MeSH D041981
Anatomical terminology

The gastrointestinal tract (GI tract, digestive tract, alimentary canal) is the tract or passageway of the digestive system that leads from the mouth to the anus. The GI tract contains all the major organs of the digestive system, in humans and other animals, including the esophagus, stomach, and intestines. Food taken in through the mouth is digested to extract nutrients and absorb energy, and the waste expelled at the anus as feces. Gastrointestinal is an adjective meaning of or pertaining to the stomach and intestines.

Contents

Most animals have a "through-gut" or complete digestive tract. Exceptions are more primitive ones: sponges have small pores (ostia) throughout their body for digestion and a larger dorsal pore (osculum) for excretion, comb jellies have both a ventral mouth and dorsal anal pores, while cnidarians and acoels have a single pore for both digestion and excretion. [1] [2]

The human gastrointestinal tract consists of the esophagus, stomach, and intestines, and is divided into the upper and lower gastrointestinal tracts. [3] The GI tract includes all structures between the mouth and the anus, [4] forming a continuous passageway that includes the main organs of digestion, namely, the stomach, small intestine, and large intestine. The complete human digestive system is made up of the gastrointestinal tract plus the accessory organs of digestion (the tongue, salivary glands, pancreas, liver and gallbladder). [5] The tract may also be divided into foregut, midgut, and hindgut, reflecting the embryological origin of each segment. The whole human GI tract is about nine meters (30 feet) long at autopsy. It is considerably shorter in the living body because the intestines, which are tubes of smooth muscle tissue, maintain constant muscle tone in a halfway-tense state but can relax in spots to allow for local distention and peristalsis. [6] [7]

The gastrointestinal tract contains the gut microbiota, with some 1,000 different strains of bacteria having diverse roles in the maintenance of immune health and metabolism, and many other microorganisms. [8] [9] [10] Cells of the GI tract release hormones to help regulate the digestive process. These digestive hormones, including gastrin, secretin, cholecystokinin, and ghrelin, are mediated through either intracrine or autocrine mechanisms, indicating that the cells releasing these hormones are conserved structures throughout evolution. [11]

Human gastrointestinal tract

Structure

Illustration of digestive system Digestive system simplified.svg
Illustration of digestive system

The structure and function can be described both as gross anatomy and as microscopic anatomy or histology. The tract itself is divided into upper and lower tracts, and the intestines small and large parts. [12]

Upper gastrointestinal tract

The upper gastrointestinal tract consists of the mouth, pharynx, esophagus, stomach, and duodenum. [13] The exact demarcation between the upper and lower tracts is the suspensory muscle of the duodenum. This differentiates the embryonic borders between the foregut and midgut, and is also the division commonly used by clinicians to describe gastrointestinal bleeding as being of either "upper" or "lower" origin. Upon dissection, the duodenum may appear to be a unified organ, but it is divided into four segments based on function, location, and internal anatomy. The four segments of the duodenum are as follows (starting at the stomach, and moving toward the jejunum): bulb, descending, horizontal, and ascending. The suspensory muscle attaches the superior border of the ascending duodenum to the jejunum.

The suspensory muscle is an important anatomical landmark that shows the formal division between the duodenum and the jejunum, the first and second parts of the small intestine, respectively. [14] This is a thin muscle which is derived from the embryonic mesoderm.

Lower gastrointestinal tract

The lower gastrointestinal tract includes most of the small intestine and all of the large intestine. [15] In human anatomy, the intestine (bowel or gut; Greek: éntera) is the segment of the gastrointestinal tract extending from the pyloric sphincter of the stomach to the anus and as in other mammals, consists of two segments: the small intestine and the large intestine. In humans, the small intestine is further subdivided into the duodenum, jejunum, and ileum while the large intestine is subdivided into the cecum, ascending, transverse, descending, and sigmoid colon, rectum, and anal canal. [16] [17]

Small intestine

The small intestine begins at the duodenum and is a tubular structure, usually between 6 and 7 m long. [18] Its mucosal area in an adult human is about 30 m2 (320 sq ft). [19] The combination of the circular folds, the villi, and the microvilli increases the absorptive area of the mucosa about 600-fold, making a total area of about 250 m2 (2,700 sq ft) for the entire small intestine. [20] Its main function is to absorb the products of digestion (including carbohydrates, proteins, lipids, and vitamins) into the bloodstream. There are three major divisions:

  1. Duodenum: A short structure (about 20–25 cm long [18] ) that receives chyme from the stomach, together with pancreatic juice containing digestive enzymes and bile from the gall bladder. The digestive enzymes break down proteins, and bile emulsifies fats into micelles. The duodenum contains Brunner's glands which produce a mucus-rich alkaline secretion containing bicarbonate. These secretions, in combination with bicarbonate from the pancreas, neutralize the stomach acids contained in the chyme.
  2. Jejunum: This is the midsection of the small intestine, connecting the duodenum to the ileum. It is about 2.5 m (8.2 ft) long and contains the circular folds also known as plicae circulares and villi that increase its surface area. Products of digestion (sugars, amino acids, and fatty acids) are absorbed into the bloodstream here.
  3. Ileum: The final section of the small intestine. It is about 3 m long, and contains villi similar to the jejunum. It absorbs mainly vitamin B12 and bile acids, as well as any other remaining nutrients.
Large intestine

The large intestine, also called the colon, forms an arch starting at the cecum and ending at the rectum and anal canal. It also includes the appendix, which is attached to the cecum. Its length is about 1.5 m, and the area of the mucosa in an adult human is about 2 m2 (22 sq ft). [19] Its main function is to absorb water and salts. The colon is further divided into:

  1. Cecum (first portion of the colon) and appendix
  2. Ascending colon (ascending in the back wall of the abdomen)
  3. Right colic flexure (flexed portion of the ascending and transverse colon apparent to the liver)
  4. Transverse colon (passing below the diaphragm)
  5. Left colic flexure (flexed portion of the transverse and descending colon apparent to the spleen)
  6. Descending colon (descending down the left side of the abdomen)
  7. Sigmoid colon (a loop of the colon closest to the rectum)
  8. Rectum
  9. Anal canal

Development

The gut is an endoderm-derived structure. At approximately the sixteenth day of human development, the embryo begins to fold ventrally (with the embryo's ventral surface becoming concave) in two directions: the sides of the embryo fold in on each other and the head and tail fold toward one another. The result is that a piece of the yolk sac, an endoderm-lined structure in contact with the ventral aspect of the embryo, begins to be pinched off to become the primitive gut. The yolk sac remains connected to the gut tube via the vitelline duct. Usually, this structure regresses during development; in cases where it does not, it is known as Meckel's diverticulum.

During fetal life, the primitive gut is gradually patterned into three segments: foregut, midgut, and hindgut. Although these terms are often used in reference to segments of the primitive gut, they are also used regularly to describe regions of the definitive gut as well.

Each segment of the gut is further specified and gives rise to specific gut and gut-related structures in later development. Components derived from the gut proper, including the stomach and colon, develop as swellings or dilatations in the cells of the primitive gut. In contrast, gut-related derivatives — that is, those structures that derive from the primitive gut but are not part of the gut proper, in general, develop as out-pouchings of the primitive gut. The blood vessels supplying these structures remain constant throughout development. [21]

PartPart in adultGives rise toArterial supply
Foregut esophagus to first 2 sections of the duodenumEsophagus, stomach, duodenum (1st and 2nd parts), liver, gallbladder, pancreas, superior portion of pancreas
(Though the spleen is supplied by the celiac trunk, it is derived from dorsal mesentery and therefore not a foregut derivative)
celiac trunk
Midgut lower duodenum, to the first two-thirds of the transverse colonlower duodenum, jejunum, ileum, cecum, appendix, ascending colon, and first two-thirds of the transverse colon branches of the superior mesenteric artery
Hindgut last third of the transverse colon, to the upper part of the anal canallast third of the transverse colon, descending colon, rectum, and upper part of the anal canal branches of the inferior mesenteric artery

Histology

General structure of the gut wall Layers of the GI Tract english.svg
General structure of the gut wall

The gastrointestinal tract has a form of general histology with some differences that reflect the specialization in functional anatomy. [22] The GI tract can be divided into four concentric layers in the following order:

Mucosa

The mucosa is the innermost layer of the gastrointestinal tract. The mucosa surrounds the lumen, or open space within the tube. This layer comes in direct contact with digested food (chyme). The mucosa is made up of:

  • Epithelium – innermost layer. Responsible for most digestive, absorptive and secretory processes.
  • Lamina propria – a layer of connective tissue. Unusually cellular compared to most connective tissue
  • Muscularis mucosae – a thin layer of smooth muscle that aids the passing of material and enhances the interaction between the epithelial layer and the contents of the lumen by agitation and peristalsis

The mucosae are highly specialized in each organ of the gastrointestinal tract to deal with the different conditions. The most variation is seen in the epithelium.

Submucosa

The submucosa consists of a dense irregular layer of connective tissue with large blood vessels, lymphatics, and nerves branching into the mucosa and muscularis externa. It contains the submucosal plexus, an enteric nervous plexus, situated on the inner surface of the muscularis externa.

Muscular layer

The muscular layer consists of an inner circular layer and a longitudinal outer layer. The circular layer prevents food from traveling backward and the longitudinal layer shortens the tract. The layers are not truly longitudinal or circular, rather the layers of muscle are helical with different pitches. The inner circular is helical with a steep pitch and the outer longitudinal is helical with a much shallower pitch. [23] Whilst the muscularis externa is similar throughout the entire gastrointestinal tract, an exception is the stomach which has an additional inner oblique muscular layer to aid with grinding and mixing of food. The muscularis externa of the stomach is composed of the inner oblique layer, middle circular layer, and the outer longitudinal layer.

Between the circular and longitudinal muscle layers is the myenteric plexus. This controls peristalsis. Activity is initiated by the pacemaker cells, (myenteric interstitial cells of Cajal). The gut has intrinsic peristaltic activity (basal electrical rhythm) due to its self-contained enteric nervous system. The rate can be modulated by the rest of the autonomic nervous system. [23]

The coordinated contractions of these layers is called peristalsis and propels the food through the tract. Food in the GI tract is called a bolus (ball of food) from the mouth down to the stomach. After the stomach, the food is partially digested and semi-liquid, and is referred to as chyme. In the large intestine, the remaining semi-solid substance is referred to as faeces. [23]

Adventitia and serosa

The outermost layer of the gastrointestinal tract consists of several layers of connective tissue.

Intraperitoneal parts of the GI tract are covered with serosa. These include most of the stomach, first part of the duodenum, all of the small intestine, caecum and appendix, transverse colon, sigmoid colon and rectum. In these sections of the gut, there is a clear boundary between the gut and the surrounding tissue. These parts of the tract have a mesentery.

Retroperitoneal parts are covered with adventitia. They blend into the surrounding tissue and are fixed in position. For example, the retroperitoneal section of the duodenum usually passes through the transpyloric plane. These include the esophagus, pylorus of the stomach, distal duodenum, ascending colon, descending colon and anal canal. In addition, the oral cavity has adventitia.

Gene and protein expression

Approximately 20,000 protein coding genes are expressed in human cells and 75% of these genes are expressed in at least one of the different parts of the digestive organ system. [24] [25] Over 600 of these genes are more specifically expressed in one or more parts of the GI tract and the corresponding proteins have functions related to digestion of food and uptake of nutrients. Examples of specific proteins with such functions are pepsinogen PGC and the lipase LIPF, expressed in chief cells, and gastric ATPase ATP4A and gastric intrinsic factor GIF, expressed in parietal cells of the stomach mucosa. Specific proteins expressed in the stomach and duodenum involved in defence include mucin proteins, such as mucin 6 and intelectin-1. [26]

Transit time

The time taken for food to transit through the gastrointestinal tract varies on multiple factors, including age, ethnicity, and gender. [27] [28] Several techniques have been used to measure transit time, including radiography following a barium-labeled meal, breath hydrogen analysis, scintigraphic analysis following a radiolabeled meal, [29] and simple ingestion and spotting of corn kernels. [30] It takes 2.5 to 3 hours for 50% of the contents to leave the stomach.[ medical citation needed ] The rate of digestion is also dependent of the material being digested, as food composition from the same meal may leave the stomach at different rates. [31] Total emptying of the stomach takes around 4–5 hours, and transit through the colon takes 30 to 50 hours. [29] [32] [33]

Immune function

The gastrointestinal tract forms an important part of the immune system. [34]

Immune barrier

The surface area of the digestive tract is estimated to be about 32 square meters, or about half a badminton court. [19] With such a large exposure (more than three times larger than the exposed surface of the skin), these immune components function to prevent pathogens from entering the blood and lymph circulatory systems. [35] Fundamental components of this protection are provided by the intestinal mucosal barrier, which is composed of physical, biochemical, and immune elements elaborated by the intestinal mucosa. [36] Microorganisms also are kept at bay by an extensive immune system comprising the gut-associated lymphoid tissue (GALT)

There are additional factors contributing to protection from pathogen invasion. For example, low pH (ranging from 1 to 4) of the stomach is fatal for many microorganisms that enter it. [37] Similarly, mucus (containing IgA antibodies) neutralizes many pathogenic microorganisms. [38] Other factors in the GI tract contribution to immune function include enzymes secreted in the saliva and bile.

Immune system homeostasis

Beneficial bacteria also can contribute to the homeostasis of the gastrointestinal immune system. For example, Clostridia, one of the most predominant bacterial groups in the GI tract, play an important role in influencing the dynamics of the gut's immune system. [39] It has been demonstrated that the intake of a high fiber diet could be responsible for the induction of T-regulatory cells (Tregs). This is due to the production of short-chain fatty acids during the fermentation of plant-derived nutrients such as butyrate and propionate. Basically, the butyrate induces the differentiation of Treg cells by enhancing histone H3 acetylation in the promoter and conserved non-coding sequence regions of the FOXP3 locus, thus regulating the T cells, resulting in the reduction of the inflammatory response and allergies.

Intestinal microbiota

The large intestine contains multiple types of bacteria that can break down molecules the human body cannot process alone, [40] demonstrating a symbiotic relationship. These bacteria are responsible for gas production at host–pathogen interface, which is released as flatulence. Intestinal bacteria can also participate in biosynthesis reactions. For example, certain strains in the large intestine produce vitamin B12; [41] an essential compound in humans for things like DNA synthesis and red blood cell production. [42] However, the primary function of the large intestine is water absorption from digested material (regulated by the hypothalamus) and the reabsorption of sodium and nutrients. [43]

Beneficial intestinal bacteria compete with potentially harmful bacteria for space and "food", as the intestinal tract has limited resources. A ratio of 80–85% beneficial to 15–20% potentially harmful bacteria is proposed for maintaining homeostasis.[ citation needed ] An imbalanced ratio results in dysbiosis.

Detoxification and drug metabolism

Enzymes such as CYP3A4, along with the antiporter activities, are also instrumental in the intestine's role of drug metabolism in the detoxification of antigens and xenobiotics. [44]

Other animals

In most vertebrates, including amphibians, birds, reptiles, egg-laying mammals, and some fish, the gastrointestinal tract ends in a cloaca and not an anus. In the cloaca, the urinary system is fused with the genito-anal pore. Therians (all mammals that do not lay eggs, including humans) possess separate anal and uro-genital openings. The females of the subgroup Placentalia have even separate urinary and genital openings.

During early development, the asymmetric position of the bowels and inner organs is initiated (see also axial twist theory).

Ruminants show many specializations for digesting and fermenting tough plant material, consisting of additional stomach compartments.

Many birds and other animals have a specialised stomach in the digestive tract called a gizzard used for grinding up food.

Another feature found in a range of animals is the crop. In birds this is found as a pouch alongside the esophagus.

In 2020, the oldest known fossil digestive tract, of an extinct wormlike organism in the Cloudinidae was discovered; it lived during the late Ediacaran period about 550 million years ago. [45] [46]

A through-gut (one with both mouth and anus) is thought to have evolved within the nephrozoan clade of Bilateria, after their ancestral ventral orifice (single, as in cnidarians and acoels; re-evolved in nephrozoans like flatworms) stretched antero-posteriorly, before the middle part of the stretch would get narrower and closed fully, leaving an anterior orifice (mouth) and a posterior orifice (anus plus genital opening). A stretched gut without the middle part closed is present in another branch of bilaterians, the extinct proarticulates. This and the amphistomic development (when both mouth and anus develop from the gut stretch in the embryo) present in some nephrozoans (e.g. roundworms) are considered to support this hypothesis. [47] [48]

Clinical significance

Diseases

There are many diseases and conditions that can affect the gastrointestinal system, including infections, inflammation and cancer.

Various pathogens, such as bacteria that cause foodborne illnesses, can induce gastroenteritis which results from inflammation of the stomach and small intestine. Antibiotics to treat such bacterial infections can decrease the microbiome diversity of the gastrointestinal tract, and further enable inflammatory mediators. [49] Gastroenteritis is the most common disease of the GI tract.

Diverticular disease is a condition that is very common in older people in industrialized countries. It usually affects the large intestine but has been known to affect the small intestine as well. Diverticulosis occurs when pouches form on the intestinal wall. Once the pouches become inflamed it is known as diverticulitis.

Inflammatory bowel disease is an inflammatory condition affecting the bowel walls, and includes the subtypes Crohn's disease and ulcerative colitis. While Crohn's can affect the entire gastrointestinal tract, ulcerative colitis is limited to the large intestine. Crohn's disease is widely regarded as an autoimmune disease. Although ulcerative colitis is often treated as though it were an autoimmune disease, there is no consensus that it actually is such.

Functional gastrointestinal disorders the most common of which is irritable bowel syndrome. Functional constipation and chronic functional abdominal pain are other functional disorders of the intestine that have physiological causes but do not have identifiable structural, chemical, or infectious pathologies.

Symptoms

Several symptoms can indicate problems with the gastrointestinal tract, including:

Treatment

Gastrointestinal surgery can often be performed in the outpatient setting. In the United States in 2012, operations on the digestive system accounted for 3 of the 25 most common ambulatory surgery procedures and constituted 9.1 percent of all outpatient ambulatory surgeries. [50]

Imaging

Various methods of imaging the gastrointestinal tract include the upper and lower gastrointestinal series:

Uses of animal guts

Intestines from animals other than humans are used in a number of ways. From each species of livestock that is a source of milk, a corresponding rennet is obtained from the intestines of milk-fed calves. Pig and calf intestines are eaten, and pig intestines are used as sausage casings. Calf intestines supply calf-intestinal alkaline phosphatase (CIP), and are used to make goldbeater's skin. Other uses are:

See also

Related Research Articles

<span class="mw-page-title-main">Gastroenterology</span> Branch of medicine focused on the digestive system and its disorders

Gastroenterology is the branch of medicine focused on the digestive system and its disorders. The digestive system consists of the gastrointestinal tract, sometimes referred to as the GI tract, which includes the esophagus, stomach, small intestine and large intestine as well as the accessory organs of digestion which include the pancreas, gallbladder, and liver.

<span class="mw-page-title-main">Stomach</span> Digestive organ

The stomach is a muscular, hollow organ in the upper gastrointestinal tract of humans and many other animals, including several invertebrates. The stomach has a dilated structure and functions as a vital organ in the digestive system. The stomach is involved in the gastric phase of digestion, following the cephalic phase in which the sight and smell of food and the act of chewing are stimuli. In the stomach a chemical breakdown of food takes place by means of secreted digestive enzymes and gastric acid.

<span class="mw-page-title-main">Duodenum</span> First section of the small intestine

The duodenum is the first section of the small intestine in most higher vertebrates, including mammals, reptiles, and birds. In mammals, it may be the principal site for iron absorption. The duodenum precedes the jejunum and ileum and is the shortest part of the small intestine.

<span class="mw-page-title-main">Small intestine</span> Organ in the gastrointestinal tract

The small intestine or small bowel is an organ in the gastrointestinal tract where most of the absorption of nutrients from food takes place. It lies between the stomach and large intestine, and receives bile and pancreatic juice through the pancreatic duct to aid in digestion. The small intestine is about 5.5 metres long and folds many times to fit in the abdomen. Although it is longer than the large intestine, it is called the small intestine because it is narrower in diameter.

Digestion is the breakdown of large insoluble food compounds into small water-soluble components so that they can be absorbed into the blood plasma. In certain organisms, these smaller substances are absorbed through the small intestine into the blood stream. Digestion is a form of catabolism that is often divided into two processes based on how food is broken down: mechanical and chemical digestion. The term mechanical digestion refers to the physical breakdown of large pieces of food into smaller pieces which can subsequently be accessed by digestive enzymes. Mechanical digestion takes place in the mouth through mastication and in the small intestine through segmentation contractions. In chemical digestion, enzymes break down food into the small compounds that the body can use.

<span class="mw-page-title-main">Enteric nervous system</span> Vital system controlling the gastrointestinal tract

The enteric nervous system (ENS) is one of the three divisions of the autonomic nervous system (ANS), the others being the sympathetic nervous system (SNS) and parasympathetic nervous system (PSNS). It consists of a mesh-like system of neurons that governs the function of the gastrointestinal tract. It is capable of acting independently of the SNS and PSNS, although it may be influenced by them. The ENS is nicknamed the "second brain". It is derived from neural crest cells.

<span class="mw-page-title-main">Gastric acid</span> Digestive fluid formed in the stomach

Gastric acid or stomach acid is the acidic component – hydrochloric acid of gastric juice, produced by parietal cells in the gastric glands of the stomach lining. With a pH of between one and three, gastric acid plays a key role in the digestion of proteins by activating digestive enzymes, which together break down the long chains of amino acids of proteins. Gastric acid is regulated in feedback systems to increase production when needed, such as after a meal. Other cells in the stomach produce bicarbonate, a base, to buffer the fluid, ensuring a regulated pH. These cells also produce mucus – a viscous barrier to prevent gastric acid from damaging the stomach. The pancreas further produces large amounts of bicarbonate and secretes bicarbonate through the pancreatic duct to the duodenum to neutralize gastric acid passing into the digestive tract.

<span class="mw-page-title-main">Myenteric plexus</span> Part of the enteric nervous system

The myenteric plexus provides motor innervation to both layers of the muscular layer of the gut, having both parasympathetic and sympathetic input, whereas the submucous plexus provides secretomotor innervation to the mucosa nearest the lumen of the gut.

<span class="mw-page-title-main">Gastrointestinal disease</span> Illnesses of the digestive system

Gastrointestinal diseases refer to diseases involving the gastrointestinal tract, namely the esophagus, stomach, small intestine, large intestine and rectum; and the accessory organs of digestion, the liver, gallbladder, and pancreas.

<span class="mw-page-title-main">Gastrointestinal perforation</span> Hole in the wall of the gastrointestinal tract

Gastrointestinal perforation, also known as gastrointestinal rupture, is a hole in the wall of the gastrointestinal tract. The gastrointestinal tract is composed of hollow digestive organs leading from the mouth to the anus. Symptoms of gastrointestinal perforation commonly include severe abdominal pain, nausea, and vomiting. Complications include a painful inflammation of the inner lining of the abdominal wall and sepsis.

<span class="mw-page-title-main">Gastrointestinal cancer</span> Organ system cancer located in gastrointestinal tract

Gastrointestinal cancer refers to malignant conditions of the gastrointestinal tract and accessory organs of digestion, including the esophagus, stomach, biliary system, pancreas, small intestine, large intestine, rectum and anus. The symptoms relate to the organ affected and can include obstruction, abnormal bleeding or other associated problems. The diagnosis often requires endoscopy, followed by biopsy of suspicious tissue. The treatment depends on the location of the tumor, as well as the type of cancer cell and whether it has invaded other tissues or spread elsewhere. These factors also determine the prognosis.

<span class="mw-page-title-main">Blood in stool</span> Medical condition of blood in the feces

Blood in stool looks different depending on how early it enters the digestive tract—and thus how much digestive action it has been exposed to—and how much there is. The term can refer either to melena, with a black appearance, typically originating from upper gastrointestinal bleeding; or to hematochezia, with a red color, typically originating from lower gastrointestinal bleeding. Evaluation of the blood found in stool depends on its characteristics, in terms of color, quantity and other features, which can point to its source, however, more serious conditions can present with a mixed picture, or with the form of bleeding that is found in another section of the tract. The term "blood in stool" is usually only used to describe visible blood, and not fecal occult blood, which is found only after physical examination and chemical laboratory testing.

<span class="mw-page-title-main">Intestinal gland</span> Gland between the intestinal villi that produces new cells

In histology, an intestinal gland is a gland found in between villi in the intestinal epithelial lining of the small intestine and large intestine. The glands and intestinal villi are covered by epithelium, which contains multiple types of cells: enterocytes, goblet cells, enteroendocrine cells, cup cells, myofibroblast, tuft cells, and at the base of the gland, Paneth cells and stem cells.

<span class="mw-page-title-main">Enteroendocrine cell</span> Cell that produces gastrointestinal hormones

Enteroendocrine cells are specialized cells of the gastrointestinal tract and pancreas with endocrine function. They produce gastrointestinal hormones or peptides in response to various stimuli and release them into the bloodstream for systemic effect, diffuse them as local messengers, or transmit them to the enteric nervous system to activate nervous responses. Enteroendocrine cells of the intestine are the most numerous endocrine cells of the body. They constitute an enteric endocrine system as a subset of the endocrine system just as the enteric nervous system is a subset of the nervous system. In a sense they are known to act as chemoreceptors, initiating digestive actions and detecting harmful substances and initiating protective responses. Enteroendocrine cells are located in the stomach, in the intestine and in the pancreas. Microbiota play key roles in the intestinal immune and metabolic responses in these enteroendocrine cells via their fermentation product, acetate.

Gastrointestinal physiology is the branch of human physiology that addresses the physical function of the gastrointestinal (GI) tract. The function of the GI tract is to process ingested food by mechanical and chemical means, extract nutrients and excrete waste products. The GI tract is composed of the alimentary canal, that runs from the mouth to the anus, as well as the associated glands, chemicals, hormones, and enzymes that assist in digestion. The major processes that occur in the GI tract are: motility, secretion, regulation, digestion and circulation. The proper function and coordination of these processes are vital for maintaining good health by providing for the effective digestion and uptake of nutrients.

<span class="mw-page-title-main">Abdominopelvic cavity</span> Body cavity that consists of the abdominal cavity and the pelvic cavity

The abdominopelvic cavity is a body cavity that consists of the abdominal cavity and the pelvic cavity. The upper portion is the abdominal cavity, and it contains the stomach, liver, pancreas, spleen, gallbladder, kidneys, small intestine, and most of the large intestine. The lower portion is the pelvic cavity, and it contains the urinary bladder, the rest of the large intestine, and the internal reproductive organs.

<span class="mw-page-title-main">Intestinal epithelium</span> Single-cell layer lining the intestines

The intestinal epithelium is the single cell layer that forms the luminal surface (lining) of both the small and large intestine (colon) of the gastrointestinal tract. Composed of simple columnar epithelium its main functions are absorption, and secretion. Useful substances are absorbed into the body, and the entry of harmful substances is restricted. Secretions include mucins, and peptides.

<span class="mw-page-title-main">Gastrointestinal wall</span> Digestive system structure

The gastrointestinal wall of the gastrointestinal tract is made up of four layers of specialised tissue. From the inner cavity of the gut outwards, these are the mucosa, the submucosa, the muscular layer and the serosa or adventitia.

<span class="mw-page-title-main">Human digestive system</span> Digestive system in humans

The human digestive system consists of the gastrointestinal tract plus the accessory organs of digestion. Digestion involves the breakdown of food into smaller and smaller components, until they can be absorbed and assimilated into the body. The process of digestion has three stages: the cephalic phase, the gastric phase, and the intestinal phase.

<span class="mw-page-title-main">Intestinal mucosal barrier</span>

The intestinal mucosal barrier, also referred to as intestinal barrier, refers to the property of the intestinal mucosa that ensures adequate containment of undesirable luminal contents within the intestine while preserving the ability to absorb nutrients. The separation it provides between the body and the gut prevents the uncontrolled translocation of luminal contents into the body proper. Its role in protecting the mucosal tissues and circulatory system from exposure to pro-inflammatory molecules, such as microorganisms, toxins, and antigens is vital for the maintenance of health and well-being. Intestinal mucosal barrier dysfunction has been implicated in numerous health conditions such as: food allergies, microbial infections, irritable bowel syndrome, inflammatory bowel disease, celiac disease, metabolic syndrome, non-alcoholic fatty liver disease, diabetes, and septic shock.

References

  1. "Overview of Invertebrates". www.ck12.org. 6 October 2015. Retrieved 25 June 2021.
  2. Ruppert EE, Fox RS, Barnes RD (2004). "Introduction to Bilateria". Invertebrate Zoology (7 ed.). Brooks / Cole. p. 197 . ISBN   978-0-03-025982-1.
  3. "gastrointestinal tract" at Dorland's Medical Dictionary
  4. Gastrointestinal+tract at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  5. "digestive system" at Dorland's Medical Dictionary
  6. G., Hounnou; C., Destrieux; J., Desmé; P., Bertrand; S., Velut (2002-12-01). "Anatomical study of the length of the human intestine". Surgical and Radiologic Anatomy. 24 (5): 290–294. doi:10.1007/s00276-002-0057-y. ISSN   0930-1038. PMID   12497219. S2CID   33366428.
  7. Raines, Daniel; Arbour, Adrienne; Thompson, Hilary W.; Figueroa-Bodine, Jazmin; Joseph, Saju (2014-05-26). "Variation in small bowel length: Factor in achieving total enteroscopy?". Digestive Endoscopy. 27 (1): 67–72. doi:10.1111/den.12309. ISSN   0915-5635. PMID   24861190. S2CID   19069407.
  8. Lin, L; Zhang, J (2017). "Role of intestinal microbiota and metabolites on gut homeostasis and human diseases". BMC Immunology. 18 (1): 2. doi: 10.1186/s12865-016-0187-3 . PMC   5219689 . PMID   28061847.
  9. Marchesi, J. R; Adams, D. H; Fava, F; Hermes, G. D; Hirschfield, G. M; Hold, G; Quraishi, M. N; Kinross, J; Smidt, H; Tuohy, K. M; Thomas, L. V; Zoetendal, E. G; Hart, A (2015). "The gut microbiota and host health: A new clinical frontier". Gut. 65 (2): 330–339. doi:10.1136/gutjnl-2015-309990. PMC   4752653 . PMID   26338727.
  10. Clarke, Gerard; Stilling, Roman M; Kennedy, Paul J; Stanton, Catherine; Cryan, John F; Dinan, Timothy G (2014). "Minireview: Gut Microbiota: The Neglected Endocrine Organ". Molecular Endocrinology. 28 (8): 1221–38. doi:10.1210/me.2014-1108. PMC   5414803 . PMID   24892638.
  11. Nelson RJ. 2005. Introduction to Behavioral Endocrinology. Sinauer Associates: Massachusetts. p 57.
  12. Thomasino, Anne Marie (2001). "Length of a Human Intestine". The Physics Factbook.
  13. Upper+Gastrointestinal+Tract at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  14. David A. Warrell (2005). Oxford textbook of medicine: Sections 18-33. Oxford University Press. pp. 511–. ISBN   978-0-19-856978-7 . Retrieved 1 July 2010.
  15. Lower+Gastrointestinal+Tract at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  16. Kapoor, Vinay Kumar (13 Jul 2011). Gest, Thomas R. (ed.). "Large Intestine Anatomy". Medscape. WebMD LLC. Retrieved 2013-08-20.
  17. Gray, Henry (1918). Gray's Anatomy. Philadelphia: Lea & Febiger.
  18. 1 2 Drake, Richard L.; Vogl, Wayne; Tibbitts, Adam W.M. Mitchell; illustrations by Richard; Richardson, Paul (2015). Gray's anatomy for students (3rd ed.). Philadelphia: Elsevier/Churchill Livingstone. p. 312. ISBN   978-0-8089-2306-0.
  19. 1 2 3 Helander, Herbert F.; Fändriks, Lars (2014-06-01). "Surface area of the digestive tract - revisited". Scandinavian Journal of Gastroenterology. 49 (6): 681–689. doi:10.3109/00365521.2014.898326. ISSN   1502-7708. PMID   24694282. S2CID   11094705.
  20. Hall, John (2011). Guyton and Hall textbook of medical physiology (Twelfth ed.). Saunders/Elsevier. p. 794. ISBN   9781416045748.
  21. Bruce M. Carlson (2004). Human Embryology and Developmental Biology (3rd ed.). Saint Louis: Mosby. ISBN   978-0-323-03649-8.
  22. Abraham L. Kierszenbaum (2002). Histology and cell biology: an introduction to pathology. St. Louis: Mosby. ISBN   978-0-323-01639-1.
  23. 1 2 3 Sarna, S.K. (2010). "Introduction". Colonic Motility: From Bench Side to Bedside. San Rafael, California: Morgan & Claypool Life Sciences. ISBN   9781615041503.
  24. "The human proteome in gastrointestinal tract - The Human Protein Atlas". www.proteinatlas.org. Retrieved 2017-09-21.
  25. Uhlén, Mathias; Fagerberg, Linn; Hallström, Björn M.; Lindskog, Cecilia; Oksvold, Per; Mardinoglu, Adil; Sivertsson, Åsa; Kampf, Caroline; Sjöstedt, Evelina (2015-01-23). "Tissue-based map of the human proteome". Science. 347 (6220): 1260419. doi:10.1126/science.1260419. ISSN   0036-8075. PMID   25613900. S2CID   802377.
  26. Gremel, Gabriela; Wanders, Alkwin; Cedernaes, Jonathan; Fagerberg, Linn; Hallström, Björn; Edlund, Karolina; Sjöstedt, Evelina; Uhlén, Mathias; Pontén, Fredrik (2015-01-01). "The human gastrointestinal tract-specific transcriptome and proteome as defined by RNA sequencing and antibody-based profiling". Journal of Gastroenterology. 50 (1): 46–57. doi:10.1007/s00535-014-0958-7. ISSN   0944-1174. PMID   24789573. S2CID   21302849.
  27. Degen, L.P.; Phillips, S.F. (August 1996), "Variability of gastrointestinal transit in healthy women and men", Gut, 39 (2): 299–305, doi:10.1136/gut.39.2.299, PMC   1383315 , PMID   8977347
  28. Madsen, MD, Jan Lysgard (1992), "Effects of gender, age, and body mass index on gastrointestinal transit times", Digestive Diseases and Sciences, 37 (10): 1548–1553, doi:10.1007/BF01296501, PMID   1396002
  29. 1 2 Bowen, Richard. "Gastrointestinal Transit: How Long Does It Take?". Colorado State University.
  30. Keendjele, Tuwilika P. T.; Eelu, Hilja H.; Nashihanga, Tunelago E.; Rennie, Timothy W.; Hunter, Christian John (1 March 2021). "Corn? When did I eat corn? Gastrointestinal transit time in health science students". Advances in Physiology Education. 45 (1): 103–108. doi: 10.1152/advan.00192.2020 . PMID   33544037. S2CID   231817664.
  31. Wilson, Malcom J.; Dickson, W.H.; Singleton, A.C. (1929), "Rate of evacuation of various foods from the normal stomach: a preliminary communication", Arch Intern Med, 44: 787–796, doi:10.1001/archinte.1929.00140060002001
  32. Kim, SK (1968). "Small intestine transit time in the normal small bowel study". American Journal of Roentgenology. 104 (3): 522–524. doi: 10.2214/ajr.104.3.522 . PMID   5687899.
  33. Ghoshal, U. C.; Sengar, V.; Srivastava, D. (2012). "Colonic Transit Study Technique and Interpretation: Can These be Uniform Globally in Different Populations with Non-uniform Colon Transit Time?". Journal of Neurogastroenterology and Motility. 18 (2): 227–228. doi:10.5056/jnm.2012.18.2.227. PMC   3325313 . PMID   22523737.
  34. Mowat, Allan M.; Agace, William W. (2014-10-01). "Regional specialization within the intestinal immune system". Nature Reviews. Immunology. 14 (10): 667–685. doi:10.1038/nri3738. ISSN   1474-1741. PMID   25234148. S2CID   31460146.
  35. Flannigan, Kyle L.; Geem, Duke; Harusato, Akihito; Denning, Timothy L. (2015-07-01). "Intestinal Antigen-Presenting Cells: Key Regulators of Immune Homeostasis and Inflammation". The American Journal of Pathology. 185 (7): 1809–1819. doi:10.1016/j.ajpath.2015.02.024. ISSN   1525-2191. PMC   4483458 . PMID   25976247.
  36. Sánchez de Medina, Fermín; Romero-Calvo, Isabel; Mascaraque, Cristina; Martínez-Augustin, Olga (2014-12-01). "Intestinal inflammation and mucosal barrier function". Inflammatory Bowel Diseases. 20 (12): 2394–2404. doi: 10.1097/MIB.0000000000000204 . ISSN   1536-4844. PMID   25222662. S2CID   11434730.
  37. Schubert, Mitchell L. (2014-11-01). "Gastric secretion". Current Opinion in Gastroenterology. 30 (6): 578–582. doi:10.1097/MOG.0000000000000125. ISSN   1531-7056. PMID   25211241. S2CID   8267813.
  38. Márquez, Mercedes; Fernández Gutiérrez Del Álamo, Clotilde; Girón-González, José Antonio (2016-01-28). "Gut epithelial barrier dysfunction in human immunodeficiency virus-hepatitis C virus coinfected patients: Influence on innate and acquired immunity". World Journal of Gastroenterology. 22 (4): 1433–1448. doi: 10.3748/wjg.v22.i4.1433 . ISSN   2219-2840. PMC   4721978 . PMID   26819512.
  39. Furusawa, Yukihiro; Obata, Yuuki; Fukuda, Shinji; Endo, Takaho A.; Nakato, Gaku; Takahashi, Daisuke; Nakanishi, Yumiko; Uetake, Chikako; Kato, Keiko; Kato, Tamotsu; Takahashi, Masumi; Fukuda, Noriko N.; Murakami, Shinnosuke; Miyauchi, Eiji; Hino, Shingo; Atarashi, Koji; Onawa, Satoshi; Fujimura, Yumiko; Lockett, Trevor; Clarke, Julie M.; Topping, David L.; Tomita, Masaru; Hori, Shohei; Ohara, Osamu; Morita, Tatsuya; Koseki, Haruhiko; Kikuchi, Jun; Honda, Kenya; Hase, Koji; Ohno, Hiroshi (2013). "Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells". Nature. 504 (7480): 446–450. Bibcode:2013Natur.504..446F. doi:10.1038/nature12721. PMID   24226770. S2CID   4408815.
  40. Knight, Judson (2002). Science of Everyday Things: Real-life biology. Vol. 4. Gale. ISBN   9780787656348.
  41. Martens, H. Barg, M. Warren, D. Jah, J.-H. (2002-03-01). "Microbial production of vitamin B 12". Applied Microbiology and Biotechnology. 58 (3): 275–285. doi:10.1007/s00253-001-0902-7. ISSN   0175-7598. PMID   11935176.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  42. "Are You Getting Enough Vitamin B12? What You Need to Know". Yale Medicine. Retrieved 2024-11-23.
  43. Azzouz, Laura L.; Sharma, Sandeep (31 July 2023). "Physiology, Large Intestine". National Library of Medicine. StatPearls Publishing. PMID   29939634 . Retrieved 24 March 2024.
  44. Jakoby, WB; Ziegler, DM (5 December 1990). "The enzymes of detoxication". The Journal of Biological Chemistry. 265 (34): 20715–8. doi: 10.1016/S0021-9258(17)45272-0 . PMID   2249981.
  45. Joel, Lucas (10 January 2020). "Fossil Reveals Earth's Oldest Known Animal Guts - The find in a Nevada desert revealed an intestine inside a creature that looks like a worm made of a stack of ice cream cones". The New York Times . Retrieved 10 January 2020.
  46. Schiffbauer, James D.; et al. (10 January 2020). "Discovery of bilaterian-type through-guts in cloudinomorphs from the terminal Ediacaran Period". Nature Communications . 11 (205): 205. Bibcode:2020NatCo..11..205S. doi: 10.1038/s41467-019-13882-z . PMC   6954273 . PMID   31924764.
  47. Nielsen, C., Brunet, T. & Arendt, D. Evolution of the bilaterian mouth and anus. Nat Ecol Evol 2, 1358–1376 (2018). https://doi.org/10.1038/s41559-018-0641-0
  48. De Robertis, E. M., & Tejeda-Muñoz, N. (2022). Evo-Devo of urbilateria and its larval forms. Developmental Biology, 487, 10–20. https://doi.org/10.1016/j.ydbio.2022.04.003
  49. Nitzan, Orna; Elias, Mazen; Peretz, Avi; Saliba, Walid (2016-01-21). "Role of antibiotics for treatment of inflammatory bowel disease". World Journal of Gastroenterology. 22 (3): 1078–1087. doi: 10.3748/wjg.v22.i3.1078 . ISSN   1007-9327. PMC   4716021 . PMID   26811648.
  50. Wier LM, Steiner CA, Owens PL (February 2015). "Surgeries in Hospital-Owned Outpatient Facilities, 2012". HCUP Statistical Brief (188). Rockville, MD: Agency for Healthcare Research and Quality.
  51. Fox, James; Timothy Wang (January 2007). "Inflammation, Atrophy, and Gastric Cancer". Journal of Clinical Investigation. review. 117 (1): 60–69. doi:10.1172/JCI30111. PMC   1716216 . PMID   17200707.
  52. Murphy, Kenneth (20 May 2014). Janeway's Immunobiology. New York: Garland Science, Taylor and Francis Group, LLC. pp. 389–398. ISBN   978-0-8153-4243-4.
  53. Parham, Peter (20 May 2014). The Immune System. New York: Garland Science Taylor and Francis Group LLC. p. 494. ISBN   978-0-8153-4146-8.
  54. Goering, Richard (20 May 2014). MIMS Medical Microbiology. Philadelphia: Elsevier. pp. 32, 64, 294, 133–4, 208, 303–4, 502. ISBN   978-0-3230-4475-2.
  55. Hiskey, Daven (12 November 2010). "Violin strings were never made out of actual cat guts". TodayIFoundOut.com. Retrieved 15 December 2015.
  56. "World's oldest condom". Ananova. 2008. Retrieved 2008-04-11.