Pituitary gland

Last updated
Pituitary gland
Gray1180.png
Located at the base of the brain, the pituitary gland is protected by a bony structure called the sella turcica of the sphenoid bone.
Gray1181.png
Median sagittal through the hypophysis of an adult monkey. Semidiagrammatic.
Details
Precursor neural and oral ectoderm, including Rathke's pouch
Artery superior hypophyseal artery, infundibular artery, prechiasmal artery, inferior hypophyseal artery, capsular artery, artery of the inferior cavernous sinus [1]
Identifiers
Latin hypophysis, glandula pituitaria
MeSH D010902
NeuroLex ID birnlex_1353
TA98 A11.1.00.001
TA2 3853
FMA 13889
Anatomical terms of neuroanatomy
An explanation of the development of the pituitary gland (hypophysis cerebri) and the congenital anomalies
Location of the human hypothalamus LocationOfHypothalamus.jpg
Location of the human hypothalamus
The hypothalamus-pituitary complex 1806 The Hypothalamus-Pituitary Complex.jpg
The hypothalamus-pituitary complex
The limbic lobe 1511 The Limbic Lobe.jpg
The limbic lobe

The pituitary gland (or hypophysis cerebri) is an endocrine gland in vertebrates. In humans, the pituitary gland is located at the base of the brain, protruding off the bottom of the hypothalamus. The human pituitary gland is oval shaped, about the size of a chickpea, [2] and weighs 0.5 grams (0.018 oz) on average.

Contents

Hormones secreted from the pituitary gland help to control growth, blood pressure, energy management, all functions of the sex organs, thyroid glands, metabolism, as well as some aspects of pregnancy, childbirth, breastfeeding, water/salt concentration at the kidneys, temperature regulation, and pain relief.

Structure

In humans, the pituitary gland rests upon the hypophyseal fossa of the sphenoid bone, in the center of the middle cranial fossa. It sits in a protective bony enclosure called the sella turcica, covered by the dural fold diaphragma sellae. [3]

The pituitary gland is composed of the anterior pituitary lobe, the posterior pituitary lobe, and an intermediate lobe that joins them. [4] The intermediate lobe is avascular and almost absent in humans. In many animals, these three lobes are distinct. The intermediate lobe is present in many animal species, particularly in rodents, mice, and rats, which have been used extensively to study pituitary development and function. [5] In all animals, the fleshy, glandular anterior pituitary is distinct from the neural composition of the posterior pituitary, which is an extension of the hypothalamus. [5]

Histology of pituitary gland Pituitary gland histology 2014.jpg
Histology of pituitary gland

The height of the pituitary gland ranges from 5.3 to 7.0 mm. The volume of the pituitary gland ranges from 200 to 440 mm3. [6]

Anterior

The anterior pituitary lobe (or adenohypophysis) arises from an invagination of the oral ectoderm (Rathke's pouch). This contrasts with the posterior pituitary, which originates from neuroectoderm.

Endocrine cells of the anterior pituitary are controlled by regulatory hormones released by parvocellular neurosecretory cells in the hypothalamic capillaries leading to infundibular blood vessels, which in turn lead to a second capillary bed in the anterior pituitary. This vascular relationship constitutes the hypothalamo-hypophyseal portal system. Diffusing out of the second capillary bed, the hypothalamic releasing hormones then bind to anterior pituitary endocrine cells, upregulating or downregulating their release of hormones. [7]

The anterior lobe of the pituitary can be divided into the pars tuberalis (pars infundibularis) and pars distalis (pars glandularis) that constitutes ~80% of the gland. The pars intermedia (the intermediate lobe) lies between the pars distalis and the pars tuberalis, and is rudimentary in the human, although in other species it is more developed. [5] It develops from a depression in the dorsal wall of the pharynx (stomal part) known as Rathke's pouch.

The anterior pituitary contains several different types of cells [8] that synthesize and secrete hormones. Usually there is one type of cell for each major hormone formed in anterior pituitary. With special stains attached to high-affinity antibodies that bind with distinctive hormone, at least 5 types of cells can be differentiated.

S.No.Type of cellHormone secretedPercentage of type of cell
1.Somatotropeshuman Growth Hormone (hGH)30–50%
2.CorticotropesAdrenoCorticoTropic Hormone (ACTH)20%
3.ThyrotropesThyroid-Stimulating Hormone (TSH)3–5%
4.GonadotropesGonadotropic hormones = both Luteinizing Hormone (LH) and Follicle-Stimulating Hormone (FSH)3–5%
5.LactotropesProlactin (PRL)3–5%

Posterior

The posterior lobe develops as an extension of the hypothalamus, from the floor of the third ventricle. The posterior pituitary hormones are synthesized by cell bodies in the hypothalamus. The magnocellular neurosecretory cells, of the supraoptic and paraventricular nuclei located in the hypothalamus, project axons down the infundibulum to terminals in the posterior pituitary. This simple arrangement differs sharply from that of the adjacent anterior pituitary, which does not develop from the hypothalamus.

The release of pituitary hormones by both the anterior and posterior lobes is under the control of the hypothalamus, albeit in different ways. [7]

Functions

Pituiary gland - regulatory hormones.png

The anterior pituitary regulates several physiological processes by secreting hormones. This includes stress (by secreting ACTH), growth (by secreting GH), reproduction (by secreting FSH and LH), metabolism rate (by secreting TSH) and lactation (by secreting prolactin). The intermediate lobe synthesizes and secretes melanocyte-stimulating hormone. The posterior pituitary (or neurohypophysis) is a lobe of the gland that is functionally connected to the hypothalamus by the median eminence via a small tube called the pituitary stalk (also called the infundibular stalk or the infundibulum). It regulates hydroelectrolytic stability (by secreting ADH), uterine contraction during labor and human attachment (by secreting oxytocin).

Anterior

The anterior pituitary synthesizes and secretes hormones. All releasing hormones (-RH) referred to can also be referred to as releasing factors (-RF).

Somatotropes:

Corticotropes:

Thyrotropes:

Gonadotropes:

Lactotropes:

These hormones are released from the anterior pituitary under the influence of the hypothalamus. Hypothalamic hormones are secreted to the anterior lobe by way of a special capillary system, called the hypothalamic-hypophysial portal system.

There is also a non-endocrine cell population called folliculostellate cells.

Intermediate

The intermediate lobe synthesizes and secretes the following important endocrine hormone:

Posterior

The posterior pituitary stores and secretes (but does not synthesize) the following important endocrine hormones:

Magnocellular neurons:

Hormones

Hormones secreted from the pituitary gland help control the following body processes:

Clinical significance

A normal-sized hand (left) and the enlarged hand of someone with acromegaly (right) Acromegaly hands.JPEG
A normal-sized hand (left) and the enlarged hand of someone with acromegaly (right)

Some of the diseases involving the pituitary gland are:

All of the functions of the pituitary gland can be adversely affected by an over- or under-production of associated hormones.

The pituitary gland is important for mediating the stress response, via the hypothalamic–pituitary–adrenal axis (HPA axis). Critically, pituitary gland growth during adolescence can be altered by early life stress such as childhood maltreatment or maternal dysphoric behavior. [13]

It has been demonstrated that, after controlling for age, sex, and BMI, larger quantities of DHEA and DHEA-S tended to be linked to larger pituitary volume. [14] Additionally, a correlation between pituitary gland volume and Social Anxiety subscale scores was identified which provided a basis for exploring mediation. Again controlling for age, sex, and BMI, DHEA and DHEA-S have been found to be predictive of larger pituitary gland volume, which was also associated with increased ratings of social anxiety. [14] This research provides evidence that pituitary gland volume mediates the link between higher DHEA(S) levels (associated with relatively early adrenarche) and traits associated with social anxiety. [14] Children who experience early adrenarcheal development tend to have larger pituitary gland volume compared to children with later adrenarcheal development. [14]

History

Etymology

Pituitary gland

The Greek physician Galen referred to the pituitary gland by only using the (Ancient Greek) name ἀδήν, [15] gland. [16] He described the pituitary gland as part of a series of secretory organs for the excretion of nasal mucus. [15] Anatomist Andreas Vesalius translated ἀδήν with glans, in quam pituita destillat, "gland in which slime (pituita [17] ) drips". [15] [18] Besides this 'descriptive' name, Vesalius used glandula pituitaria, from which the English name pituitary gland [19] is ultimately derived.

The expression glandula pituitaria is still used as official synonym beside hypophysis in the official Latin nomenclature Terminologia Anatomica . [20] In the seventeenth century the supposed function of the pituitary gland to produce nasal mucus was debunked. [15] The expression glandula pituitaria and its English equivalent pituitary gland can only be justified from a historical point of view. [21] The inclusion of this synonym is merely justified by noting that the main term hypophysis is a much less popular term. [22]

Hypophysis

Note: hypophysial (or hypophyseal) means "related to the hypophysis (pituitary gland)".

The anatomist Samuel Thomas von Sömmerring coined the name hypophysis. [15] This name consists [15] [21] of ὑπό ('under') [16] and φύειν ('to grow'). [16] In later Greek ὑπόφυσις is used differently by Greek physicians as outgrowth. [15] Sömmering also used the equivalent expression appendix cerebri, [15] [18] with appendix as appendage. [17] In various languages, Hirnanhang [18] in German and hersenaanhangsel [23] in Dutch, the terms are derived from appendix cerebri.

Other animals

The pituitary gland is found in all vertebrates, but its structure varies among different groups.

The division of the pituitary described above is typical of mammals, and is also true, to varying degrees, of all tetrapods. However, only in mammals does the posterior pituitary have a compact shape. In lungfish, it is a relatively flat sheet of tissue lying above the anterior pituitary, but in amphibians, reptiles, and birds, it becomes increasingly well developed. The intermediate lobe is, in general, not well developed in any species and is entirely absent in birds. [24]

The structure of the pituitary in fish, apart from the lungfish, is generally different from that in other animals. In general, the intermediate lobe tends to be well developed, and may equal the remainder of the anterior pituitary in size. The posterior lobe typically forms a sheet of tissue at the base of the pituitary stalk, and in most cases sends irregular finger-like projection into the tissue of the anterior pituitary, which lies directly beneath it. The anterior pituitary is typically divided into two regions, a more anterior rostral portion and a posterior proximal portion, but the boundary between the two is often not clearly marked. In elasmobranchs there is an additional, ventral lobe beneath the anterior pituitary proper. [24]

The arrangement in lampreys, which are among the most primitive of all fish, may indicate how the pituitary originally evolved in ancestral vertebrates. Here, the posterior pituitary is a simple flat sheet of tissue at the base of the brain, and there is no pituitary stalk. Rathke's pouch remains open to the outside, close to the nasal openings. Closely associated with the pouch are three distinct clusters of glandular tissue, corresponding to the intermediate lobe, and the rostral and proximal portions of the anterior pituitary. These various parts are separated by meningial membranes, suggesting that the pituitary of other vertebrates may have formed from the fusion of a pair of separate, but associated, glands. [24]

Most armadillos also possess a neural secretory gland very similar in form to the posterior pituitary, but located in the tail and associated with the spinal cord. This may have a function in osmoregulation. [24]

There is a structure analogous to the pituitary in the octopus brain. [25]

Intermediate lobe

Although rudimentary in humans (and often considered part of the anterior pituitary), the intermediate lobe located between the anterior and posterior pituitary is important to many animals. For instance, in fish, it is believed to control physiological color change. In adult humans, it is just a thin layer of cells between the anterior and posterior pituitary. The intermediate lobe produces melanocyte-stimulating hormone (MSH), although this function is often (imprecisely) attributed to the anterior pituitary.

The intermediate lobe is, in general, not well developed in tetrapods, and is entirely absent in birds. [24]

See also

Related Research Articles

<span class="mw-page-title-main">Endocrine system</span> Hormone-producing glands of a body

The endocrine system is a messenger system in an organism comprising feedback loops of hormones that are released by internal glands directly into the circulatory system and that target and regulate distant organs. In vertebrates, the hypothalamus is the neural control center for all endocrine systems.

<span class="mw-page-title-main">Hypothalamus</span> Area of the brain below the thalamus

The hypothalamus is a small part of the brain that contains a number of nuclei with a variety of functions. One of the most important functions is to link the nervous system to the endocrine system via the pituitary gland. The hypothalamus is located below the thalamus and is part of the limbic system. It forms the ventral part of the diencephalon. All vertebrate brains contain a hypothalamus. In humans, it is the size of an almond.

<span class="mw-page-title-main">Vasopressin</span> Mammalian hormone released from the pituitary gland

Human vasopressin, also called antidiuretic hormone (ADH), arginine vasopressin (AVP) or argipressin, is a hormone synthesized from the AVP gene as a peptide prohormone in neurons in the hypothalamus, and is converted to AVP. It then travels down the axon terminating in the posterior pituitary, and is released from vesicles into the circulation in response to extracellular fluid hypertonicity (hyperosmolality). AVP has two primary functions. First, it increases the amount of solute-free water reabsorbed back into the circulation from the filtrate in the kidney tubules of the nephrons. Second, AVP constricts arterioles, which increases peripheral vascular resistance and raises arterial blood pressure.

<span class="mw-page-title-main">Anterior pituitary</span> Anterior lobe of the pituitary gland

A major organ of the endocrine system, the anterior pituitary is the glandular, anterior lobe that together with the posterior lobe makes up the pituitary gland (hypophysis) which, in humans, is located at the base of the brain, protruding off the bottom of the hypothalamus.

<span class="mw-page-title-main">Posterior pituitary</span> Posterior lobe of the pituitary gland

The posterior pituitary is the posterior lobe of the pituitary gland which is part of the endocrine system. The posterior pituitary is not glandular as is the anterior pituitary. Instead, it is largely a collection of axonal projections from the hypothalamus that terminate behind the anterior pituitary, and serve as a site for the secretion of neurohypophysial hormones directly into the blood. The hypothalamic–neurohypophyseal system is composed of the hypothalamus, posterior pituitary, and these axonal projections.

<span class="mw-page-title-main">Supraoptic nucleus</span> ADH secreting nucleus of the hypothalamus.

The supraoptic nucleus (SON) is a nucleus of magnocellular neurosecretory cells in the hypothalamus of the mammalian brain. The nucleus is situated at the base of the brain, adjacent to the optic chiasm. In humans, the SON contains about 3,000 neurons.

<span class="mw-page-title-main">Paraventricular nucleus of hypothalamus</span>

The paraventricular nucleus is a nucleus in the hypothalamus. Anatomically, it is adjacent to the third ventricle and many of its neurons project to the posterior pituitary. These projecting neurons secrete oxytocin and a smaller amount of vasopressin, otherwise the nucleus also secretes corticotropin-releasing hormone (CRH) and thyrotropin-releasing hormone (TRH). CRH and TRH are secreted into the hypophyseal portal system and act on different targets neurons in the anterior pituitary. PVN is thought to mediate many diverse functions through these different hormones, including osmoregulation, appetite, and the response of the body to stress.

Corticotropes are basophilic cells in the anterior pituitary that produce pro-opiomelanocortin (POMC) which undergoes cleavage to adrenocorticotropin (ACTH), β-lipotropin (β-LPH), and melanocyte-stimulating hormone (MSH). These cells are stimulated by corticotropin releasing hormone (CRH) and make up 15–20% of the cells in the anterior pituitary. The release of ACTH from the corticotropic cells is controlled by CRH, which is formed in the cell bodies of parvocellular neurosecretory cells within the paraventricular nucleus of the hypothalamus and passes to the corticotropes in the anterior pituitary via the hypophyseal portal system. Adrenocorticotropin hormone stimulates the adrenal cortex to release glucocorticoids and plays an important role in the stress response.

<span class="mw-page-title-main">Hypopituitarism</span> Medical condition

Hypopituitarism is the decreased (hypo) secretion of one or more of the eight hormones normally produced by the pituitary gland at the base of the brain. If there is decreased secretion of one specific pituitary hormone, the condition is known as selective hypopituitarism. If there is decreased secretion of most or all pituitary hormones, the term panhypopituitarism is used.

<span class="mw-page-title-main">Arcuate nucleus</span>

The arcuate nucleus of the hypothalamus is an aggregation of neurons in the mediobasal hypothalamus, adjacent to the third ventricle and the median eminence. The arcuate nucleus includes several important and diverse populations of neurons that help mediate different neuroendocrine and physiological functions, including neuroendocrine neurons, centrally projecting neurons, and astrocytes. The populations of neurons found in the arcuate nucleus are based on the hormones they secrete or interact with and are responsible for hypothalamic function, such as regulating hormones released from the pituitary gland or secreting their own hormones. Neurons in this region are also responsible for integrating information and providing inputs to other nuclei in the hypothalamus or inputs to areas outside this region of the brain. These neurons, generated from the ventral part of the periventricular epithelium during embryonic development, locate dorsally in the hypothalamus, becoming part of the ventromedial hypothalamic region. The function of the arcuate nucleus relies on its diversity of neurons, but its central role is involved in homeostasis. The arcuate nucleus provides many physiological roles involved in feeding, metabolism, fertility, and cardiovascular regulation.

<span class="mw-page-title-main">Pituitary adenoma</span> Human disease

Pituitary adenomas are tumors that occur in the pituitary gland. Most pituitary tumors are benign, approximately 35% are invasive and just 0.1% to 0.2% are carcinomas. Pituitary adenomas represent from 10% to 25% of all intracranial neoplasms and the estimated prevalence rate in the general population is approximately 17%.

<span class="mw-page-title-main">Endocrine gland</span> Glands of the endocrine system that secrete hormones to blood

Endocrine glands are ductless glands of the endocrine system that secrete their products, hormones, directly into the blood. The major glands of the endocrine system include the pineal gland, pituitary gland, pancreas, ovaries, testicles, thyroid gland, parathyroid gland, hypothalamus and adrenal glands. The hypothalamus and pituitary glands are neuroendocrine organs.

A neurohormone is any hormone produced and released by neuroendocrine cells into the blood. By definition of being hormones, they are secreted into the circulation for systemic effect, but they can also have a role of neurotransmitter or other roles such as autocrine (self) or paracrine (local) messenger.

Neuroendocrine cells are cells that receive neuronal input and, as a consequence of this input, release messenger molecules (hormones) into the blood. In this way they bring about an integration between the nervous system and the endocrine system, a process known as neuroendocrine integration. An example of a neuroendocrine cell is a cell of the adrenal medulla, which releases adrenaline to the blood. The adrenal medullary cells are controlled by the sympathetic division of the autonomic nervous system. These cells are modified postganglionic neurons. Autonomic nerve fibers lead directly to them from the central nervous system. The adrenal medullary hormones are kept in vesicles much in the same way neurotransmitters are kept in neuronal vesicles. Hormonal effects can last up to ten times longer than those of neurotransmitters. Sympathetic nerve fiber impulses stimulate the release of adrenal medullary hormones. In this way the sympathetic division of the autonomic nervous system and the medullary secretions function together.

Neuroendocrinology is the branch of biology which studies the interaction between the nervous system and the endocrine system; i.e. how the brain regulates the hormonal activity in the body. The nervous and endocrine systems often act together in a process called neuroendocrine integration, to regulate the physiological processes of the human body. Neuroendocrinology arose from the recognition that the brain, especially the hypothalamus, controls secretion of pituitary gland hormones, and has subsequently expanded to investigate numerous interconnections of the endocrine and nervous systems.

<span class="mw-page-title-main">Hypophyseal portal system</span> System of blood vessels

The hypophyseal portal system is a system of blood vessels in the microcirculation at the base of the brain, connecting the hypothalamus with the anterior pituitary. Its main function is to quickly transport and exchange hormones between the hypothalamus arcuate nucleus and anterior pituitary gland. The capillaries in the portal system are fenestrated which allows a rapid exchange between the hypothalamus and the pituitary. The main hormones transported by the system include gonadotropin-releasing hormone, corticotropin-releasing hormone, growth hormone–releasing hormone, and thyrotropin-releasing hormone.

Non-tropic hormones are hormones that directly stimulate target cells to induce effects. This differs from the tropic hormones, which act on another endocrine gland. Non-tropic hormones are those that act directly on targeted tissues or cells, and not on other endocrine gland to stimulate release of other hormones. Many hormones act in a chain reaction. Tropic hormones usually act in the beginning of the reaction stimulating other endocrine gland to eventually release non-tropic hormones. These are the ones that act in the end of the chain reaction on other cells that are not part of other endocrine gland. The Hypothalamic-pituitary-adrenal axis is a perfect example of this chain reaction. The reaction begins in the hypothalamus with a release of corticotropin-releasing hormone/factor. This stimulates the anterior pituitary and causes it to release Adrenocorticotropic hormone to the adrenal glands. Lastly, cortisol (non-tropic) is secreted from the adrenal glands and goes into the bloodstream where it can have more widespread effects on organs and tissues. Since cortisol is what finally reaches other tissues in the body, it is a non-tropic hormone. CRH and ACTH are tropic hormones because they act on the anterior pituitary gland and adrenal glands, respectively, both of which are endocrine glands. Non-tropic hormones are thus often the last piece of a larger process and chain of hormone secretion. Both tropic and non-tropic hormones are necessary for proper endocrine function. For example, if ACTH is inhibited, cortisol can no longer be released because the chain reaction has been interrupted. Some examples of non-tropic hormones are:

Hypothalamic–pituitary hormones are hormones that are produced by the hypothalamus and pituitary gland. Although the organs in which they are produced are relatively small, the effects of these hormones cascade throughout the body. They can be classified as a hypothalamic–pituitary axis of which the adrenal, gonadal, thyroid, somatotropic, and prolactin axes are branches.

Hypothalamic disease is a disorder presenting primarily in the hypothalamus, which may be caused by damage resulting from malnutrition, including anorexia and bulimia eating disorders, genetic disorders, radiation, surgery, head trauma, lesion, tumour or other physical injury to the hypothalamus. The hypothalamus is the control center for several endocrine functions. Endocrine systems controlled by the hypothalamus are regulated by antidiuretic hormone (ADH), corticotropin-releasing hormone, gonadotropin-releasing hormone, growth hormone-releasing hormone, oxytocin, all of which are secreted by the hypothalamus. Damage to the hypothalamus may impact any of these hormones and the related endocrine systems. Many of these hypothalamic hormones act on the pituitary gland. Hypothalamic disease therefore affects the functioning of the pituitary and the target organs controlled by the pituitary, including the adrenal glands, ovaries and testes, and the thyroid gland.

References

  1. Gibo H, Hokama M, Kyoshima K, Kobayashi S (1993). "[Arteries to the pituitary]". Nippon Rinsho. 51 (10): 2550–4. PMID   8254920.
  2. Leng, Gareth (2018). The Heart of the Brain: The Hypothalamus and its Hormones. The gland in humans is described in Wikipedia as being the size of a pea. So common is this description that it seemed likely to be wrong, as I confirmed by examining a selection of peas. Wikipedia also gives the weight of the human pituitary as about half a gram, and in this it is more correct. The pituitary in a human is at least five times the average size of my peas; it is more like the size of a chickpea.
  3. Mancall, Elliott L.; Brock, David G., eds. (2011). "Cranial Fossae". Gray's Clinical Anatomy. Elsevier Health Sciences. p. 154. ISBN   978-1-4377-3580-2.
  4. Ganapathy MK, Tadi P (Jan 2020). "Anatomy, Head and Neck, Pituitary Gland". StatPearls [Internet]. StatPearls Publishing. PMID   31855373 . Retrieved 24 Sep 2020.
  5. 1 2 3 Melmed, Shlomo (2011). The Pituitary - (Third ed.). San Diego, CA: Academic Press is an imprint of Elsevier. pp.  23–25. ISBN   978-0-12-380926-1.
  6. Yadav, Pratiksha; Singhal, Shubham; Chauhan, Surbhi; Harit, Saumya (2017). "MRI Evaluation of Size and Shape of Normal Pituitary Gland: Age and Sex Related Changes". Journal of Clinical and Diagnostic Research. doi: 10.7860/JCDR/2017/31034.10933 .
  7. 1 2 Boron, Walter F.; Boulpaep, Emile L. (2009). Medical Physiology (2nd ed.). Philadelphia: Saunders Elsevier. pp. 1016–1017. ISBN   978-1-4160-3115-4.
  8. Textbook of Medical Physiology. Elsevier Saunders.
  9. Knepel, W; Homolka, L; Vlaskovska, M; Nutto, D (1984). "Stimulation of adrenocorticotropin/beta-endorphin release by synthetic ovine corticotropin-releasing factor in vitro: Enhancement by various vasopressin analogs". Neuroendocrinology. 38 (5): 344–50. doi:10.1159/000123915. PMID   6328345.
  10. Brunton, Laurence L.; Chabner, Bruce A.; Knollmann, Björn C., eds. (2011). Goodman & Gilman's pharmacological basis of therapeutics (12th ed.). New York: McGraw-Hill. ISBN   978-0-07-162442-8.
  11. Shlomo Melmed (3 December 2010). The pituitary. Academic Press. p. 40. ISBN   978-0-12-380926-1.
  12. Pocock, Gillian (2006). Human Physiology (Third ed.). Oxford University Press. p. 193. ISBN   978-0-19-856878-0.
  13. Ganella, Despina E.; Allen, Nicholas B.; Simmons, Julian G.; Schwartz, Orli; Kim, Jee Hyun; Sheeber, Lisa; Whittle, Sarah (2015). "Early life stress alters pituitary growth during adolescence—A longitudinal study". Psychoneuroendocrinology. 53: 185–194. doi:10.1016/j.psyneuen.2015.01.005. hdl:10536/DRO/DU:30144589. PMID   25622011. S2CID   5247274.
  14. 1 2 3 4 Murray, CR; Simmons, JG; Allen, NB; Byrne, ML; Mundy, LK; Seal, ML; Patton, GC; Olsson, CA; Whittle, S (February 2016). "Associations between dehydroepiandrosterone (DHEA) levels, pituitary volume, and social anxiety in children". Psychoneuroendocrinology. 64: 31–9. doi:10.1016/j.psyneuen.2015.11.004. PMID   26600008. S2CID   22520320.
  15. 1 2 3 4 5 6 7 8 Hyrtl, J. (1880). Onomatologia Anatomica. Geschichte und Kritik der anatomischen Sprache der Gegenwart. Wien: Wilhelm Braumüller. K.K. Hof- und Universitätsbuchhändler.
  16. 1 2 3 Liddell, H.G. & Scott, R. (1940). A Greek-English Lexicon. revised and augmented throughout by Sir Henry Stuart Jones. with the assistance of. Roderick McKenzie. Oxford: Clarendon Press.
  17. 1 2 Lewis, C.T. & Short, C. (1879). A Latin dictionary founded on Andrews' edition of Freund's Latin dictionary. Oxford: Clarendon Press.
  18. 1 2 3 Schreger, C.H.Th.(1805). Synonymia anatomica. Synonymik der anatomischen Nomenclatur. Fürth: im Bureau für Literatur.
  19. Anderson, D.M. (2000). Dorland's illustrated medical dictionary (29th edition). Philadelphia/London/Toronto/Montreal/Sydney/Tokyo: W.B. Saunders Company.
  20. Federative Committee on Anatomical Terminology (FCAT) (1998). Terminologia Anatomica. Stuttgart: Thieme
  21. 1 2 Triepel, H. (1927). Die anatomischen Namen. Ihre Ableitung und Aussprache. Anhang: Biographische Notizen.(Elfte Auflage). München: Verlag J.F. Bergmann.
  22. International Anatomical Nomenclature Committee (1966). Nomina Anatomica. Amsterdam: Excerpta Medica Foundation, p. 62
  23. Pinkhof, H. (1923). Vertalend en verklarend woordenboek van uitheemsche geneeskundige termen. Haarlem: De Erven F. Bohn.
  24. 1 2 3 4 5 Romer, Alfred Sherwood; Parsons, Thomas S. (1977). The Vertebrate Body. Philadelphia, PA: Holt-Saunders International. pp. 549–550. ISBN   0-03-910284-X.
  25. Wells, M. J.; Wells, J. (1969). "Pituitary Analogue in the Octopus". Nature . 222 (5190): 293–294. Bibcode:1969Natur.222..293W. doi:10.1038/222293a0. PMID   5778406. S2CID   4159935.