Subthalamic nucleus

Last updated

Subthalamic nucleus
Basal-ganglia-coronal-sections-large.png
Coronal slices of human brain showing the basal ganglia (external globus pallidus (GPe) and internal globus pallidus (GPi)), subthalamic nucleus (STN) and substantia nigra (SN).
DA-loops in PD.svg
DA-loops in Parkinson's disease
Details
Part of Subthalamus (physically); basal ganglia (functionally)
Identifiers
Latin nucleus subthalamicus
Acronym(s)STN
MeSH D020531
NeuroNames 435
NeuroLex ID nlx_anat_1010002
TA98 A14.1.08.702
TA2 5709
FMA 62035
Anatomical terms of neuroanatomy

The subthalamic nucleus (STN) is a small lens-shaped nucleus in the brain where it is, from a functional point of view, part of the basal ganglia system. In terms of anatomy, it is the major part of the subthalamus. As suggested by its name, the subthalamic nucleus is located ventral to the thalamus. It is also dorsal to the substantia nigra and medial to the internal capsule.

Contents

Anatomy

Structural connectivity of the human subthalamic nucleus as visualized through diffusion-weighted MRI.

Structure

The principal type of neuron found in the subthalamic nucleus has rather long, sparsely spiny dendrites. [1] [2] In the more centrally located neurons, the dendritic arbors have a more ellipsoidal shape. [3] The dimensions of these arbors (1200 μm, 600 μm, and 300 μm) are similar across many species—including rat, cat, monkey and human—which is unusual. However, the number of neurons increases with brain size as well as the external dimensions of the nucleus. The principal neurons are glutamatergic, which give them a particular functional position in the basal ganglia system. In humans there are also a small number (about 7.5%) of GABAergic interneurons that participate in the local circuitry; however, the dendritic arbors of subthalamic neurons shy away from the border and primarily interact with one another. [4]

The structure of the subthalamic nucleus has not yet been fully explored and understood, but it is likely composed of several internal domains. The primate subthalamic nucleus is often divided in three internal anatomical-functional domains. However, this so-called tripartite model has been debated because it does not fully explain the complexity of the subthalamic nucleus in brain function. [5] [6]

Afferent axons

The subthalamic nucleus receives its main input from the external globus pallidus (GPe), [7] not so much through the ansa lenticularis as often said but by radiating 'comb' fibers crossing the medial pallidum first and the internal capsule (forming part of Edinger's comb system, see figure), as well as the ansa subthalamica. [8] These afferents are GABAergic, inhibiting neurons in the subthalamic nucleus. Excitatory, glutamatergic inputs come from the cerebral cortex (entire frontal cortex with a predominance for motor, premotor and oculomotor input to the posterolateral part of the nucleus), and from the pars parafascicularis of the central complex. The subthalamic nucleus also receives neuromodulatory inputs, notably dopaminergic axons from the substantia nigra pars compacta. [9] It also receives inputs from the pedunculopontine nucleus.

Efferent targets

The axons of subthalamic nucleus neurons leave the nucleus dorsally. The efferent axons are glutamatergic (excitatory). Except for the connection to the striatum (17.3% in macaques), most of the subthalamic principal neurons are multitargets and directed to the other elements of the core of the basal ganglia. [10] Some send axons to the substantia nigra medially and to the medial and lateral nuclei of the pallidum laterally (3-target, 21.3%). Some are 2-target with the lateral pallidum and the substantia nigra (2.7%) or the lateral pallidum and the medial (48%). Less are single target for the lateral pallidum. In the pallidum, subthalamic terminals end in bands parallel to the pallidal border. [10] [11] When all axons reaching this target are added, the main efference of the subthalamic nucleus is, in 82.7% of the cases, clearly the internal globus pallidus (GPi).

Some researchers have reported internal axon collaterals. [12] However, there is little functional evidence for this.

Physiology

Anatomical overview of the main circuits of the basal ganglia. Subthalamic nucleus is shown in red. Picture shows 2 coronal slices that have been superimposed to include the involved basal ganglia structures. + and - signs at the point of the arrows indicate respectively whether the pathway is excitatory or inhibitory in effect.
@media screen{html.skin-theme-clientpref-night .mw-parser-output div:not(.notheme)>.tmp-color,html.skin-theme-clientpref-night .mw-parser-output p>.tmp-color,html.skin-theme-clientpref-night .mw-parser-output table:not(.notheme) .tmp-color{color:inherit!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output div:not(.notheme)>.tmp-color,html.skin-theme-clientpref-os .mw-parser-output p>.tmp-color,html.skin-theme-clientpref-os .mw-parser-output table:not(.notheme) .tmp-color{color:inherit!important}}
Green arrows refer to excitatory glutamatergic pathways,
red arrows refer to inhibitory GABAergic pathways and
turquoise arrows refer to dopaminergic pathways that are excitatory on the direct pathway and inhibitory on the indirect pathway. Basal ganglia circuits.svg
Anatomical overview of the main circuits of the basal ganglia. Subthalamic nucleus is shown in red. Picture shows 2 coronal slices that have been superimposed to include the involved basal ganglia structures. + and - signs at the point of the arrows indicate respectively whether the pathway is excitatory or inhibitory in effect. Green arrows refer to excitatory glutamatergic pathways, red arrows refer to inhibitory GABAergic pathways and turquoise arrows refer to dopaminergic pathways that are excitatory on the direct pathway and inhibitory on the indirect pathway.

Subthalamic nucleus

The first intracellular electrical recordings of subthalamic neurons were performed using sharp electrodes in a rat slice preparation.[ citation needed ] In these recordings three key observations were made, all three of which have dominated subsequent reports of subthalamic firing properties. The first observation was that, in the absence of current injection or synaptic stimulation, the majority of cells were spontaneously firing. The second observation is that these cells are capable of transiently firing at very high frequencies. The third observation concerns non-linear behaviors when cells are transiently depolarized after being hyperpolarized below –65mV. They are then able to engage voltage-gated calcium and sodium currents to fire bursts of action potentials.

Several recent studies have focused on the autonomous pacemaking ability of subthalamic neurons. These cells are often referred to as "fast-spiking pacemakers", [13] since they can generate spontaneous action potentials at rates of 80 to 90 Hz in primates.

Oscillatory and synchronous activity [14] [15] is likely to be a typical pattern of discharge in subthalamic neurons recorded from patients and animal models characterized by the loss of dopaminergic cells in the substantia nigra pars compacta, which is the principal pathology that underlies Parkinson's disease.

Lateropallido-subthalamic system

Strong reciprocal connections link the subthalamic nucleus and the external segment of the globus pallidus. Both are fast-spiking pacemakers. Together, they are thought to constitute the "central pacemaker of the basal ganglia" [16] with synchronous bursts.

The connection of the lateral pallidum with the subthalamic nucleus is also the one in the basal ganglia system where the reduction between emitter/receiving elements is likely the strongest. In terms of volume, in humans, the lateral pallidum measures 808 mm3, the subthalamic nucleus only 158 mm3. [17] This translated in numbers of neurons represents a strong compression with loss of map precision.

Some axons from the lateral pallidum go to the striatum. [18] The activity of the medial pallidum is influenced by afferences from the lateral pallidum and from the subthalamic nucleus. [19] The same for the substantia nigra pars reticulata. [11] The subthalamic nucleus sends axons to another regulator: the pedunculo-pontine complex (id).

The lateropallido-subthalamic system is thought to play a key role in the generation of the patterns of activity seen in Parkinson's disease. [20]

Pathophysiology

Lesioning the STN leads to alleviation of motor symptoms such as akinesia, rigidity, and tremor in Parkinson disease. This was first shown in the MPTP primate model in a paper by Bergman and colleagues. [21] This inspired Benazzouz and colleagues to probe deep brain stimulation of the nucleus, which was known to exert similar effects as ablative lesions. [22] Soon after, the team of Alim Louis Benabid showed that deep brain stimulation of the nucleus leads to symptom relief in human patients with Parkinson disease, as well, [23] which led to the establishment of the currently FDA approved and widely applied form of deep brain stimulation. The first to be stimulated are the terminal arborisations of afferent axons, which modify the activity of subthalamic neurons. However, it has been shown in thalamic slices from mice, [24] that the stimulus also causes nearby astrocytes to release adenosine triphosphate (ATP), a precursor to adenosine (through a catabolic process). In turn, adenosine A1 receptor activation depresses excitatory transmission in the thalamus, thus mimicking ablation of the subthalamic nucleus.

Before the Bergman paper, the stereotactic field avoided lesioning the nucleus, since it was known that unilateral destruction or disruption of the subthalamic nucleus — which may result from naturally occurring strokes — may lead to hemiballismus. While this remains generally true, iatrogenic lesioning of the STN has been carried out numerous times and has recently gained new wind with the advent of MR guided focused ultrasound, which has also been probed for subthalamic nucleotomies to treat Parkinson disease. [25] Curiously, a team around Michael Fox could recently show that, while some lesions that led to hemiballism were indeed in and around the STN, the majority of reported cases were in other regions of the brain. [26]

As one of the STN's suspected functions is in impulse control, dysfunction in this region has been implicated in obsessive–compulsive disorder. [27] Application of high frequency pulses by deep brain stimulation has shown some promise in correcting severe impulsive behavior and has been FDA approved for treatment resistant cases with the disorder. [28]

Function

The function of the STN is not fully understood but it is believed that, as a component of the basal ganglia, it plays a part in the so-called "hyperdirect" and "indirect" pathways of motor control, as opposed to the direct pathway which bypasses the STN on its way from the Striatum to the internal pallidum. STN dysfunction has been implicated in motor symptoms such as rigidity, bradykinesia and tremor, [29] behavioral features such as stopping of ongoing movements [30] or impulsivity in individuals presented with two equally rewarding stimuli. [31]

The physiological role of the STN has been for long hidden by its pathological role. But lately, the research on the physiology of the STN led to the discovery that the STN is required to achieve intended movement, including locomotion, balance and motor coordination. It is involved in stopping or interrupting on-going motor tasks. Moreover, STN excitation was generally correlated with significant reduction in locomotor activity, while in contrast, STN inhibition enhanced locomotion. [32] [33] [34]

History

The STN was first described by Jules Bernard Luys in 1865. [35]

Additional images

See also

Related Research Articles

<span class="mw-page-title-main">Putamen</span> Round structure at the base of the forebrain

The putamen is a subcortical nucleus with a rounded structure, in the basal ganglia nuclear group. It is located at the base of the forebrain and above the midbrain.

<span class="mw-page-title-main">Striatum</span> Nucleus in the basal ganglia of the brain

The striatum or corpus striatum is a cluster of interconnected nuclei that make up the largest structure of the subcortical basal ganglia. The striatum is a critical component of the motor and reward systems; receives glutamatergic and dopaminergic inputs from different sources; and serves as the primary input to the rest of the basal ganglia.

<span class="mw-page-title-main">Substantia nigra</span> Structure in the basal ganglia of the brain

The substantia nigra (SN) is a basal ganglia structure located in the midbrain that plays an important role in reward and movement. Substantia nigra is Latin for "black substance", reflecting the fact that parts of the substantia nigra appear darker than neighboring areas due to high levels of neuromelanin in dopaminergic neurons. Parkinson's disease is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta.

<span class="mw-page-title-main">Basal ganglia</span> Group of subcortical nuclei involved in the motor and reward systems

The basal ganglia (BG) or basal nuclei are a group of subcortical nuclei found in the brains of vertebrates. In humans and other primates, differences exist, primarily in the division of the globus pallidus into external and internal regions, and in the division of the striatum. Positioned at the base of the forebrain and the top of the midbrain, they have strong connections with the cerebral cortex, thalamus, brainstem and other brain areas. The basal ganglia are associated with a variety of functions, including regulating voluntary motor movements, procedural learning, habit formation, conditional learning, eye movements, cognition, and emotion.

<span class="mw-page-title-main">Globus pallidus</span> Structure of the basal ganglia of the brain

The globus pallidus (GP), also known as paleostriatum or dorsal pallidum, is a major component of the subcortical basal ganglia in the brain. It consists of two adjacent segments, one external, known in rodents simply as the globus pallidus, and one internal. It is part of the telencephalon, but retains close functional ties with the subthalamus in the diencephalon – both of which are part of the extrapyramidal motor system.

<span class="mw-page-title-main">Nigrostriatal pathway</span> Bilateral pathway in the brain

The nigrostriatal pathway is a bilateral dopaminergic pathway in the brain that connects the substantia nigra pars compacta (SNc) in the midbrain with the dorsal striatum in the forebrain. It is one of the four major dopamine pathways in the brain, and is critical in the production of movement as part of a system called the basal ganglia motor loop. Dopaminergic neurons of this pathway release dopamine from axon terminals that synapse onto GABAergic medium spiny neurons (MSNs), also known as spiny projection neurons (SPNs), located in the striatum.

<span class="mw-page-title-main">Indirect pathway</span> Neuronal circuit that suppresses unwanted movements

The indirect pathway, sometimes known as the indirect pathway of movement, is a neuronal circuit through the basal ganglia and several associated nuclei within the central nervous system (CNS) which helps to prevent unwanted muscle contractions from competing with voluntary movements. It operates in conjunction with the direct pathway.

<span class="mw-page-title-main">Hypokinesia</span> Decreased movement due to basal ganglia dysfunction

Hypokinesia is one of the classifications of movement disorders, and refers to decreased bodily movement. Hypokinesia is characterized by a partial or complete loss of muscle movement due to a disruption in the basal ganglia. Hypokinesia is a symptom of Parkinson's disease shown as muscle rigidity and an inability to produce movement. It is also associated with mental health disorders and prolonged inactivity due to illness, amongst other diseases.

The pars reticulata (SNpr) is a portion of the substantia nigra and is located lateral to the pars compacta. Most of the neurons that project out of the pars reticulata are inhibitory GABAergic neurons.

<span class="mw-page-title-main">Pedunculopontine nucleus</span>

The pedunculopontine nucleus (PPN) or pedunculopontine tegmental nucleus is a collection of neurons located in the upper pons in the brainstem. It is involved in voluntary movements, arousal, and provides sensory feedback to the cerebral cortex and one of the main components of the ascending reticular activating system. It is a potential target for deep brain stimulation treatment for Parkinson's disease. It was first described in 1909 by Louis Jacobsohn-Lask, a German neuroanatomist.

The zona incerta (ZI) is a horizontally elongated small nucleus that separates the larger subthalamic nucleus from the thalamus. Its connections project extensively over the brain from the cerebral cortex down into the spinal cord.

<span class="mw-page-title-main">Primate basal ganglia</span>

The basal ganglia form a major brain system in all vertebrates, but in primates there are special differentiating features. The basal ganglia include the striatum, globus pallidus, substantia nigra and subthalamic nucleus. In primates the pallidus is divided into an external and internal globus pallidus, the external globus pallidus is present in other mammals but not the internal globus pallidus. Also in primates, the dorsal striatum is divided by a large nerve tract called the internal capsule into two masses named the caudate nucleus and the putamen. These differences contribute to a complex circuitry of connections between the striatum and cortex that is specific to primates, reflecting different functions in primate cortical areas.

<span class="mw-page-title-main">Pars compacta</span> Dopamine-releasing portion of the substantia nigra

The pars compacta (SNpc) is one of two subdivisions of the substantia nigra of the midbrain ; it is situated medial to the pars reticulata. It is formed by dopaminergic neurons. It projects to the striatum and portions of the cerebral cortex. It is functionally involved in fine motor control.

<span class="mw-page-title-main">Medium spiny neuron</span> Type of GABAergic neuron in the striatum

Medium spiny neurons (MSNs), also known as spiny projection neurons (SPNs), are a special type of inhibitory GABAergic neuron representing approximately 90% of neurons within the human striatum, a basal ganglia structure. Medium spiny neurons have two primary phenotypes : D1-type MSNs of the direct pathway and D2-type MSNs of the indirect pathway. Most striatal MSNs contain only D1-type or D2-type dopamine receptors, but a subpopulation of MSNs exhibit both phenotypes.

<span class="mw-page-title-main">External globus pallidus</span> Part of the globus pallidus

The external globus pallidus combines with the internal globus pallidus (GPi) to form the globus pallidus, an anatomical subset of the basal ganglia. Globus pallidus means "pale globe" in Latin, indicating its appearance. The external globus pallidus is the segment of the globus pallidus that is relatively further (lateral) from the midline of the brain.

<span class="mw-page-title-main">Internal globus pallidus</span>

The internal globus pallidus is one of the two subcortical nuclei that provides inhibitory output in the basal ganglia, the other being the substantia nigra pars reticulata. Together with the external globus pallidus (GPe), it makes up one of the two segments of the globus pallidus, a structure that can decay with certain neurodegenerative disorders and is a target for medical and neurosurgical therapies. The GPi, along with the substantia nigra pars reticulata, comprise the primary output of the basal ganglia, with its outgoing GABAergic neurons having an inhibitory function in the thalamus, the centromedian complex and the pedunculopontine complex.

<span class="mw-page-title-main">Basal ganglia disease</span> Group of physical problems resulting from basal ganglia dysfunction

Basal ganglia disease is a group of physical problems that occur when the group of nuclei in the brain known as the basal ganglia fail to properly suppress unwanted movements or to properly prime upper motor neuron circuits to initiate motor function. Research indicates that increased output of the basal ganglia inhibits thalamocortical projection neurons. Proper activation or deactivation of these neurons is an integral component for proper movement. If something causes too much basal ganglia output, then the ventral anterior (VA) and ventral lateral (VL) thalamocortical projection neurons become too inhibited, and one cannot initiate voluntary movement. These disorders are known as hypokinetic disorders. However, a disorder leading to abnormally low output of the basal ganglia leads to reduced inhibition, and thus excitation, of the thalamocortical projection neurons which synapse onto the cortex. This situation leads to an inability to suppress unwanted movements. These disorders are known as hyperkinetic disorders.

<span class="mw-page-title-main">Blocq's disease</span> Loss of memory of specialized movements causing the inability to maintain an upright posture

Blocq's disease was first considered by Paul Blocq (1860–1896), who described this phenomenon as the loss of memory of specialized movements causing the inability to maintain an upright posture, despite normal function of the legs in the bed. The patient is able to stand up, but as soon as the feet are on the ground, the patient cannot hold himself upright nor walk; however when lying down, the subject conserved the integrity of muscular force and the precision of movements of the lower limbs. The motivation of this study came when a fellow student Georges Marinesco (1864) and Paul published a case of parkinsonian tremor (1893) due to a tumor located in the substantia nigra.

The ventral pallidum (VP) is a structure within the basal ganglia of the brain. It is an output nucleus whose fibres project to thalamic nuclei, such as the ventral anterior nucleus, the ventral lateral nucleus, and the medial dorsal nucleus. The VP is a core component of the reward system which forms part of the limbic loop of the basal ganglia, a pathway involved in the regulation of motivational salience, behavior, and emotions. It is involved in addiction.

<span class="mw-page-title-main">Nucleus basalis</span> Group of neurons in the brain

In the human brain, the nucleus basalis, also known as the nucleus basalis of Meynert or nucleus basalis magnocellularis, is a group of neurons located mainly in the substantia innominata of the basal forebrain. Most neurons of the nucleus basalis are rich in the neurotransmitter acetylcholine, and they have widespread projections to the neocortex and other brain structures.

References

  1. Afsharpour S (June 1985). "Light microscopic analysis of Golgi-impregnated rat subthalamic neurons". The Journal of Comparative Neurology. 236 (1): 1–13. doi:10.1002/cne.902360102. PMID   4056088. S2CID   12482772.
  2. Rafols JA, Fox CA (July 1976). "The neurons in the primate subthalamic nucleus: a Golgi and electron microscopic study". The Journal of Comparative Neurology. 168 (1): 75–111. doi:10.1002/cne.901680105. PMID   819471. S2CID   11962279.
  3. Yelnik J, Percheron G (1979). "Subthalamic neurons in primates: a quantitative and comparative analysis". Neuroscience. 4 (11): 1717–1743. doi:10.1016/0306-4522(79)90030-7. PMID   117397. S2CID   40909863.
  4. Lévesque JC, Parent A (May 2005). "GABAergic interneurons in human subthalamic nucleus". Movement Disorders. 20 (5): 574–584. doi:10.1002/mds.20374. PMID   15645534. S2CID   9551517.
  5. Alkemade A, Forstmann BU (July 2014). "Do we need to revise the tripartite subdivision hypothesis of the human subthalamic nucleus (STN)?". NeuroImage. 95: 326–329. doi:10.1016/j.neuroimage.2014.03.010. PMID   24642281. S2CID   11010595.
  6. Lambert C, Zrinzo L, Nagy Z, Lutti A, Hariz M, Foltynie T, et al. (March 2012). "Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging". NeuroImage. 60 (1): 83–94. doi:10.1016/j.neuroimage.2011.11.082. PMC   3315017 . PMID   22173294.
  7. Canteras NS, Shammah-Lagnado SJ, Silva BA, Ricardo JA (April 1990). "Afferent connections of the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat". Brain Research. 513 (1): 43–59. doi:10.1016/0006-8993(90)91087-W. PMID   2350684. S2CID   22996045.
  8. Alho EJ, Alho AT, Horn A, Martin MD, Edlow BL, Fischl B, et al. (January 2020). "The Ansa Subthalamica: A Neglected Fiber Tract". Movement Disorders. 35 (1): 75–80. doi:10.1002/mds.27901. PMID   31758733.
  9. Cragg SJ, Baufreton J, Xue Y, Bolam JP, Bevan MD (October 2004). "Synaptic release of dopamine in the subthalamic nucleus". The European Journal of Neuroscience. 20 (7): 1788–1802. doi: 10.1111/j.1460-9568.2004.03629.x . PMID   15380000. S2CID   14698708.
  10. 1 2 Nauta HJ, Cole M (July 1978). "Efferent projections of the subthalamic nucleus: an autoradiographic study in monkey and cat". The Journal of Comparative Neurology. 180 (1): 1–16. doi:10.1002/cne.901800102. PMID   418083. S2CID   43046462.
  11. 1 2 Smith Y, Hazrati LN, Parent A (April 1990). "Efferent projections of the subthalamic nucleus in the squirrel monkey as studied by the PHA-L anterograde tracing method". The Journal of Comparative Neurology. 294 (2): 306–323. doi:10.1002/cne.902940213. PMID   2332533. S2CID   9667393.
  12. Kita H, Chang HT, Kitai ST (April 1983). "The morphology of intracellularly labeled rat subthalamic neurons: a light microscopic analysis". The Journal of Comparative Neurology. 215 (3): 245–257. doi:10.1002/cne.902150302. PMID   6304154. S2CID   32152785.
  13. Surmeier DJ, Mercer JN, Chan CS (June 2005). "Autonomous pacemakers in the basal ganglia: who needs excitatory synapses anyway?". Current Opinion in Neurobiology. 15 (3): 312–318. doi:10.1016/j.conb.2005.05.007. PMID   15916893. S2CID   42900941.
  14. Levy R, Hutchison WD, Lozano AM, Dostrovsky JO (October 2000). "High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor". The Journal of Neuroscience. 20 (20): 7766–7775. doi:10.1523/JNEUROSCI.20-20-07766.2000. PMC   6772896 . PMID   11027240.
  15. Lintas A, Silkis IG, Albéri L, Villa AE (January 2012). "Dopamine deficiency increases synchronized activity in the rat subthalamic nucleus" (PDF). Brain Research. 1434 (3): 142–151. doi:10.1016/j.brainres.2011.09.005. PMID   21959175. S2CID   14636489.
  16. Plenz D, Kital ST (August 1999). "A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus". Nature. 400 (6745): 677–682. Bibcode:1999Natur.400..677P. doi:10.1038/23281. PMID   10458164. S2CID   4356230.
  17. Yelnik J (2002). "Functional anatomy of the basal ganglia". Movement Disorders. 17 (Suppl. 3): S15–S21. doi:10.1002/mds.10138. PMID   11948751. S2CID   40925638.
  18. Sato F, Lavallée P, Lévesque M, Parent A (January 2000). "Single-axon tracing study of neurons of the external segment of the globus pallidus in primate". The Journal of Comparative Neurology. 417 (1): 17–31. doi:10.1002/(SICI)1096-9861(20000131)417:1<17::AID-CNE2>3.0.CO;2-I. PMID   10660885. S2CID   84665164.
  19. Smith Y, Wichmann T, DeLong MR (May 1994). "Synaptic innervation of neurones in the internal pallidal segment by the subthalamic nucleus and the external pallidum in monkeys". The Journal of Comparative Neurology. 343 (2): 297–318. doi:10.1002/cne.903430209. PMID   8027445. S2CID   24968074.
  20. Bevan MD, Magill PJ, Terman D, Bolam JP, Wilson CJ (October 2002). "Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network". Trends in Neurosciences. 25 (10): 525–531. doi:10.1016/S0166-2236(02)02235-X. PMID   12220881. S2CID   8127062.
  21. Bergman H, Wichmann T, DeLong MR (September 1990). "Reversal of experimental parkinsonism by lesions of the subthalamic nucleus". Science. 249 (4975): 1436–1438. Bibcode:1990Sci...249.1436B. doi:10.1126/science.2402638. PMID   2402638.
  22. Benazzouz A, Gross C, Féger J, Boraud T, Bioulac B (April 1993). "Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys". The European Journal of Neuroscience. 5 (4): 382–389. doi:10.1111/j.1460-9568.1993.tb00505.x. PMID   8261116.
  23. Pollak P, Benabid AL, Gross C, Gao DM, Laurent A, Benazzouz A, et al. (1993). "[Effects of the stimulation of the subthalamic nucleus in Parkinson disease]". Revue Neurologique. 149 (3): 175–176. PMID   8235208.
  24. Bekar L, Libionka W, Tian GF, Xu Q, Torres A, Wang X, et al. (January 2008). "Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor". Nature Medicine. 14 (1): 75–80. doi:10.1038/nm1693. PMID   18157140. S2CID   7107064.
  25. Martínez-Fernández R, Máñez-Miró JU, Rodríguez-Rojas R, Del Álamo M, Shah BB, Hernández-Fernández F, et al. (December 2020). "Randomized Trial of Focused Ultrasound Subthalamotomy for Parkinson's Disease". The New England Journal of Medicine. 383 (26): 2501–2513. doi:10.1056/NEJMoa2016311. PMID   33369354.
  26. Laganiere S, Boes AD, Fox MD (June 2016). "Network localization of hemichorea-hemiballismus". Neurology. 86 (23): 2187–2195. doi:10.1212/WNL.0000000000002741. PMC   4898318 . PMID   27170566.
  27. Carter R. The Human Brain Book. pp. 58, 233.
  28. Mallet L, Polosan M, Jaafari N, Baup N, Welter ML, Fontaine D, et al. (November 2008). "Subthalamic nucleus stimulation in severe obsessive-compulsive disorder". The New England Journal of Medicine. 359 (20): 2121–2134. doi: 10.1056/NEJMoa0708514 . PMID   19005196.
  29. Bergman H, Wichmann T, DeLong MR (September 1990). "Reversal of experimental parkinsonism by lesions of the subthalamic nucleus". Science. 249 (4975): 1436–1438. Bibcode:1990Sci...249.1436B. doi:10.1126/science.2402638. PMID   2402638.
  30. Lofredi R, Auernig GC, Irmen F, Nieweler J, Neumann WJ, Horn A, et al. (February 2021). "Subthalamic stimulation impairs stopping of ongoing movements". Brain. 144 (1): 44–52. doi:10.1093/brain/awaa341. PMID   33253351.
  31. Frank MJ, Samanta J, Moustafa AA, Sherman SJ (November 2007). "Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism". Science. 318 (5854): 1309–1312. Bibcode:2007Sci...318.1309F. doi: 10.1126/science.1146157 . PMID   17962524. S2CID   2718110.
  32. Aron AR, Behrens TE, Smith S, Frank MJ, Poldrack RA (April 2007). "Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI". The Journal of Neuroscience. 27 (14): 3743–3752. doi:10.1523/JNEUROSCI.0519-07.2007. PMC   6672420 . PMID   17409238.
  33. Fife KH, Gutierrez-Reed NA, Zell V, Bailly J, Lewis CM, Aron AR, et al. (July 2017). Uchida N (ed.). "Causal role for the subthalamic nucleus in interrupting behavior". eLife. 6: e27689. doi: 10.7554/eLife.27689 . PMC   5526663 . PMID   28742497.
  34. Guillaumin A, Serra GP, Georges F, Wallén-Mackenzie Å (March 2021). "Experimental investigation into the role of the subthalamic nucleus (STN) in motor control using optogenetics in mice". Brain Research. 1755: 147226. doi: 10.1016/j.brainres.2020.147226 . PMID   33358727.
  35. Luys JB (1865). Recherches sur le système cérébro-spinal, sa structure, ses fonctions et ses maladies (in French). Paris: Baillière.