Supplementary motor area

Last updated
Supplementary motor area
Posterior Parietal Lobe.jpg
Some motor areas in the human cortex. The supplementary motor area is shown in pink.
Supplementary motor cortex.gif
3D visualization of the supplementary motor cortex in an average human brain
Identifiers
NeuroNames 3176
FMA 224858
Anatomical terms of neuroanatomy

The supplementary motor area (SMA) is a part of the motor cortex of primates that contributes to the control of movement. It is located on the midline surface of the hemisphere just in front of (anterior to) the primary motor cortex leg representation. In monkeys, the SMA contains a rough map of the body. In humans, the body map is not apparent. Neurons in the SMA project directly to the spinal cord and may play a role in the direct control of movement. Possible functions attributed to the SMA include the postural stabilization of the body, the coordination of both sides of the body such as during bimanual action, the control of movements that are internally generated rather than triggered by sensory events, and the control of sequences of movements. All of these proposed functions remain hypotheses. The precise role or roles of the SMA is not yet known.

Contents

For the discovery of the SMA and its relationship to other motor cortical areas, see the main article on the motor cortex.

Subregions

At least six areas are now recognized within the larger region once defined as the SMA. These subdivisions have been studied most extensively in the monkey brain. The most anterior portion is now commonly termed pre-SMA. [1] [2] [3] It has sparse or no connections to the spinal cord or the primary motor cortex and has extensive connectivity with prefrontal areas. [1] [4] [5] [6] [7]

The supplementary eye field (SEF) is a relatively anterior portion of the SMA that, when stimulated, evokes head and eye movements and perhaps movements of the limbs and torso. [8] [9] [10] [11]

Dum and Strick [5] hypothesized on the basis of cytoarchitecture and connections to the spinal cord that the portion of SMA in the cingulate sulcus, on the medial part of the hemisphere, can be split into three separate areas, the cingulate motor areas. The functions of the cingulate motor areas have not yet been systematically studied, though may be involved in emotionally driven behaviours like the limbic laugh.

SMA proper in monkeys has now been confined to a region on the crown of the hemisphere and extending partly onto the medial wall, just anterior to the primary motor leg representation. SMA proper projects directly to the spinal cord and therefore is one of the primary output areas of the cortical motor system. [5] [12] [13] [14] [15] [16]

Recently, Zhang et al. [17] investigated the functional subdivisions of the medial SFC on the basis of whole-brain connectivity characterized from a large resting-state fMRI data set. Other than replicating the boundaries between SMA and preSMA, the current results support a functional difference between the posterior and anterior pre-SMA. In contrast to the posterior pre-SMA, the anterior pre-SMA is connected with most of the prefrontal but not somatomotor areas. Overall, the SMA is strongly connected to the thalamus and epithalamus, the posterior pre-SMA to putamen, pallidum, and STN and anterior pre-SMA to the caudate nucleus, with the caudate showing significant hemispheric asymmetry.

Functions

Penfield and Welch [18] in 1951 first described SMA in the monkey brain and the human brain as a representation of the body on the medial wall of the hemisphere. Woolsey and colleagues [19] in 1952 confirmed SMA in the monkey brain, describing it as a rough somatotopic map with the legs in a posterior location and the face in an anterior location. The representations of different body parts were found to overlap extensively. Stimulation of many sites evoked bilateral movements and sometimes movements of all four limbs. This overlapping somatotopic map in SMA was confirmed by many others. [2] [13] [20] [21] [22]

Four main hypotheses have been proposed for the function of SMA: the control of postural stability during stance or walking, [18] coordinating temporal sequences of actions, [23] [24] [25] [26] [27] [28] [29] [30] bimanual coordination, [31] [32] and the initiation of internally generated as opposed to stimulus driven movement. [3] [29] [30] [33] The data, however, tend not to support an exclusive role of SMA in any one of these functions. Indeed, SMA is demonstrably active during non-sequential, unimanual, and stimulus-cued movements. [34]

In humans, the SMA has been shown to generate the early component of the Bereitschaftspotential (BP) or readiness potential BP1 or BPearly. [35] The role of the SMA was further substantiated by Cunnington et al. 2003, [36] showing that SMA proper and pre-SMA are active prior to volitional movement or action, as well as the cingulate motor area (CMA) and anterior mid-cingulate cortex (aMCC). Recently it has been shown by integrating simultaneously acquired EEG and fMRI that SMA and aMCC have strong reciprocal connections that act to sustain each other’s activity, and that this interaction is mediated during movement preparation according to the Bereitschaftspotential amplitude. [37]

SMA in the monkey brain may emphasize locomotion, especially complex locomotion such as climbing or leaping. [38] [39] [40] This suggestion was based on studies in which stimulation on a behaviorally relevant time scale evoked complex, full body movements that resembled climbing or leaping. This hypothesis is consistent with previous hypotheses, including the involvement of SMA in postural stabilization, in internally generated movements, in bimanual coordination, and in the planning of movement sequences, because all of these functions are heavily recruited in complex locomotion. The locomotion hypothesis is an example of interpreting the motor cortex in terms of the underlying behavioral repertoire from which abstract control functions emerge, an approach emphasized by Graziano and colleagues. [38]

Additional images

Related Research Articles

<span class="mw-page-title-main">Precuneus</span> Region of the parietal lobe of the brain

In neuroanatomy, the precuneus is the portion of the superior parietal lobule on the medial surface of each brain hemisphere. It is located in front of the cuneus. The precuneus is bounded in front by the marginal branch of the cingulate sulcus, at the rear by the parieto-occipital sulcus, and underneath by the subparietal sulcus. It is involved with episodic memory, visuospatial processing, reflections upon self, and aspects of consciousness.

<span class="mw-page-title-main">Brodmann area 10</span> Brain area

Brodmann area 10 is the anterior-most portion of the prefrontal cortex in the human brain. BA10 was originally defined broadly in terms of its cytoarchitectonic traits as they were observed in the brains of cadavers, but because modern functional imaging cannot precisely identify these boundaries, the terms anterior prefrontal cortex, rostral prefrontal cortex and frontopolar prefrontal cortex are used to refer to the area in the most anterior part of the frontal cortex that approximately covers BA10—simply to emphasize the fact that BA10 does not include all parts of the prefrontal cortex.

<span class="mw-page-title-main">Superior colliculus</span> Structure in the midbrain

In neuroanatomy, the superior colliculus is a structure lying on the roof of the mammalian midbrain. In non-mammalian vertebrates, the homologous structure is known as the optic tectum or optic lobe. The adjective form tectal is commonly used for both structures.

<span class="mw-page-title-main">Motor cortex</span> Region of the cerebral cortex

The motor cortex is the region of the cerebral cortex involved in the planning, control, and execution of voluntary movements. The motor cortex is an area of the frontal lobe located in the posterior precentral gyrus immediately anterior to the central sulcus.

<span class="mw-page-title-main">Insular cortex</span> Portion of the mammalian cerebral cortex

The insular cortex is a portion of the cerebral cortex folded deep within the lateral sulcus within each hemisphere of the mammalian brain.

In neurology, the Bereitschaftspotential or BP, also called the pre-motor potential or readiness potential (RP), is a measure of activity in the motor cortex and supplementary motor area of the brain leading up to voluntary muscle movement. The BP is a manifestation of cortical contribution to the pre-motor planning of volitional movement. It was first recorded and reported in 1964 by Hans Helmut Kornhuber and Lüder Deecke at the University of Freiburg in Germany. In 1965 the full publication appeared after many control experiments.

In animals, including humans, the startle response is a largely unconscious defensive response to sudden or threatening stimuli, such as sudden noise or sharp movement, and is associated with negative affect. Usually the onset of the startle response is a startle reflex reaction. The startle reflex is a brainstem reflectory reaction (reflex) that serves to protect vulnerable parts, such as the back of the neck and the eyes (eyeblink) and facilitates escape from sudden stimuli. It is found across many different species, throughout all stages of life. A variety of responses may occur depending on the affected individual's emotional state, body posture, preparation for execution of a motor task, or other activities. The startle response is implicated in the formation of specific phobias.

<span class="mw-page-title-main">Motor coordination</span> Directed movement of body parts to accomplish an action

In physiology, motor coordination is the orchestrated movement of multiple body parts as required to accomplish intended actions, like walking. This coordination is achieved by adjusting kinematic and kinetic parameters associated with each body part involved in the intended movement. The modifications of these parameters typically relies on sensory feedback from one or more sensory modalities, such as proprioception and vision.

<span class="mw-page-title-main">Supplementary eye field</span> Region of the frontal cortex of the brain

Supplementary eye field (SEF) is the name for the anatomical area of the dorsal medial frontal lobe of the primate cerebral cortex that is indirectly involved in the control of saccadic eye movements. Evidence for a supplementary eye field was first shown by Schlag, and Schlag-Rey. Current research strives to explore the SEF's contribution to visual search and its role in visual salience. The SEF constitutes together with the frontal eye fields (FEF), the intraparietal sulcus (IPS), and the superior colliculus (SC) one of the most important brain areas involved in the generation and control of eye movements, particularly in the direction contralateral to their location. Its precise function is not yet fully known. Neural recordings in the SEF show signals related to both vision and saccades somewhat like the frontal eye fields and superior colliculus, but currently most investigators think that the SEF has a special role in high level aspects of saccade control, like complex spatial transformations, learned transformations, and executive cognitive functions.

<span class="mw-page-title-main">Premotor cortex</span> Part of the human brain

The premotor cortex is an area of the motor cortex lying within the frontal lobe of the brain just anterior to the primary motor cortex. It occupies part of Brodmann's area 6. It has been studied mainly in primates, including monkeys and humans.

<span class="mw-page-title-main">Primate basal ganglia</span>

The basal ganglia form a major brain system in all vertebrates, but in primates there are special differentiating features. The basal ganglia include the striatum, globus pallidus, substantia nigra and subthalamic nucleus. In primates the pallidus is divided into an external and internal globus pallidus, the external globus pallidus is present in other mammals but not the internal globus pallidus. Also in primates, the dorsal striatum is divided by a large nerve tract called the internal capsule into two masses named the caudate nucleus and the putamen. These differences contribute to a complex circuitry of connections between the striatum and cortex that is specific to primates, reflecting different functions in primate cortical areas.

Beevor's Axiom is the idea that the brain does not know muscles, only movements. In other words, the brain registers the movements that muscles combine to make, not the individual muscles that are making the movements. Hence, this is why one can sign their name with their foot. Beevor's Axiom was coined by Dr. Charles Edward Beevor, an English neurologist.

Premovement neuronal activity in neurophysiological literature refers to neuronal modulations that alter the rate at which neurons fire before a subject produces movement. Through experimentation with multiple animals, predominantly monkeys, it has been shown that several regions of the brain are particularly active and involved in initiation and preparation of movement. Two specific membrane potentials, the bereitschaftspotential, or the BP, and contingent negative variation, or the CNV, play a pivotal role in premovement neuronal activity. Both have been shown to be directly involved in planning and initiating movement. Multiple factors are involved with premovement neuronal activity including motor preparation, inhibition of motor response, programming of the target of movement, closed-looped and open-looped tasks, instructed delay periods, short-lead and long-lead changes, and mirror motor neurons.

Kurt A. Thoroughman is an Associate Professor in the Department of Biomedical Engineering at Washington University in St. Louis. He is known for his work in the study of motor control, motor learning, and computational neuroscience.

The isothalamus is a division used by some researchers in describing the thalamus.

<span class="mw-page-title-main">Primary motor cortex</span> Part of the brains frontal cortex

The primary motor cortex is a brain region that in humans is located in the dorsal portion of the frontal lobe. It is the primary region of the motor system and works in association with other motor areas including premotor cortex, the supplementary motor area, posterior parietal cortex, and several subcortical brain regions, to plan and execute voluntary movements. Primary motor cortex is defined anatomically as the region of cortex that contains large neurons known as Betz cells, which, along with other cortical neurons, send long axons down the spinal cord to synapse onto the interneuron circuitry of the spinal cord and also directly onto the alpha motor neurons in the spinal cord which connect to the muscles.

The neuroscience of music is the scientific study of brain-based mechanisms involved in the cognitive processes underlying music. These behaviours include music listening, performing, composing, reading, writing, and ancillary activities. It also is increasingly concerned with the brain basis for musical aesthetics and musical emotion. Scientists working in this field may have training in cognitive neuroscience, neurology, neuroanatomy, psychology, music theory, computer science, and other relevant fields.

Michael Steven Anthony Graziano is an American scientist and novelist who is currently a professor of Psychology and Neuroscience at Princeton University. His scientific research focuses on the brain basis of awareness. He has proposed the "attention schema" theory, an explanation of how, and for what adaptive advantage, brains attribute the property of awareness to themselves. His previous work focused on how the cerebral cortex monitors the space around the body and controls movement within that space. Notably he has suggested that the classical map of the body in motor cortex, the homunculus, is not correct and is better described as a map of complex actions that make up the behavioral repertoire. His publications on this topic have had a widespread impact among neuroscientists but have also generated controversy. His novels rely partly on his background in psychology and are known for surrealism or magic realism. Graziano also composes music including symphonies and string quartets.

<span class="mw-page-title-main">Motor program</span> Abstract representation of movement

A motor program is an abstract metaphor of the central organization of movement and control of the many degrees of freedom involved in performing an action. Biologically realistic alternatives to the metaphor of the "motor program" are represented by central pattern generators.p. 182 Signals transmitted through efferent and afferent pathways allow the central nervous system to anticipate, plan or guide movement. Evidence for the concept of motor programs include the following:p. 182

Nonprimary motor cortex is a functionally defined portion of the frontal lobe. It includes two subdivisions, the premotor cortex and the supplementary motor cortex. Largely coincident with the cytoarchitecturally defined area 6 of Brodmann (human), it is located primarily in the rostral portion of the precentral gyrus and caudal portions of the superior frontal gyrus and the middle frontal gyrus, It aids in cerebral control of movement. Anatomically speaking, several nonprimary areas exist, and make direct connections with the spinal cord.

References

  1. 1 2 He, S.Q., Dum, R.P. and Strick, P.L (1995). "Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere". J. Neurosci. 15 (5): 3284–3306. doi: 10.1523/JNEUROSCI.15-05-03284.1995 . PMC   6578253 . PMID   7538558.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. 1 2 Luppino, G., Matelli, M., Camarda, R.M., Gallese, V. and Rizzolatti, G (1991). "Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: an intracortical microstimulation study in the macaque monkey". J. Comp. Neurol. 311 (4): 463–482. doi:10.1002/cne.903110403. PMID   1757598. S2CID   25297539.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. 1 2 Matsuzaka, Y., Aizawa, H., and Tanji, J (1992). "A motor area rostrao to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task". J. Neurophysiol. 68 (3): 653–662. doi:10.1152/jn.1992.68.3.653. PMID   1432040.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. Bates, J.F. & Goldman-Rakic, P.S (1993). "Prefrontal connections of medial motor areas in the rhesus monkey". J. Comp. Neurol. 336 (2): 211–228. doi:10.1002/cne.903360205. PMID   7503997. S2CID   35838076.
  5. 1 2 3 Dum, R.P. & Strick, P.L (1991). "The origin of corticospinal projections from the premotor areas in the frontal lobe". J. Neurosci. 11 (3): 667–689. doi: 10.1523/JNEUROSCI.11-03-00667.1991 . PMC   6575356 . PMID   1705965.
  6. Lu, M.T., Preston, J.B. and Strick, P.L (1994). "Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe". J. Comp. Neurol. 341 (3): 375–392. doi:10.1002/cne.903410308. PMID   7515081. S2CID   13045173.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. Luppino, G., Matelli, M., Camarda, R. and Rizzolatti, G (1993). "Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey". J. Comp. Neurol. 338 (1): 114–140. doi:10.1002/cne.903380109. PMID   7507940. S2CID   6171579.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. Chen, L.L. & Walton, M.M (2005). "Head movement evoked by electrical stimulation in the supplementary eye field of the rhesus monkey". J. Neurophysiol. 94 (6): 4502–4519. doi:10.1152/jn.00510.2005. PMID   16148273.
  9. Russo, G.S. & Bruce, C.J (2000). "Supplementary eye field: representation of saccades and relationship between neural response fields and elicited eye movements". J. Neurophysiol. 84 (5): 2605–2621. doi:10.1152/jn.2000.84.5.2605. PMID   11068002. S2CID   16208146.
  10. Schlag, J & Schlag-Rey, M (1987). "Evidence for a supplementary eye field". J. Neurophysiol. 57 (1): 179–200. doi:10.1152/jn.1987.57.1.179. PMID   3559671.
  11. Tehovnik, E.J. & Lee, K (1993). "The dorsomedial frontal cortex of the rhesus monkey: topographic representation of saccades evoked by electrical stimulation". Exp. Brain Res. 96 (3): 430–442. doi:10.1007/bf00234111. PMID   8299745. S2CID   11322416.
  12. Galea, M.P. & Darian-Smith, I (1994). "Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections". Cereb. Cortex. 4 (2): 166–194. doi:10.1093/cercor/4.2.166. PMID   8038567.
  13. 1 2 Macpherson, J., Marangoz, C., Miles, T.S. and Wiesendanger, M (1982). "Microstimulation of the supplementary motor area (SMA) in the awake monkey". Exp. Brain Res. 45 (3): 410–416. doi:10.1007/bf01208601. PMID   7067775. S2CID   10053006.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  14. Murray, E.A. & Coulter, J.D (1981). "Organization of corticospinal neurons in the monkey". J. Comp. Neurol. 195 (2): 339–365. doi:10.1002/cne.901950212. PMID   7251930. S2CID   20215391.
  15. Nudo, R.J. & Masterton, R.B (1990). "Descending pathways of the spinal cord, III: Sites of origin of the corticospinal tract". J. Comp. Neurol. 296 (4): 559–583. doi:10.1002/cne.902960405. PMID   2113540. S2CID   20563396.
  16. Toyoshima, K & Sakai, H (1982). "Exact cortical extent of the origin of the corticospinal tract (CST) and the quantitative contribution to the CST in different cytoarchitectonic areas. A study with horseradish peroxidase in the monkey". J. Hirnforsch. 23 (3): 257–269. PMID   7130676.
  17. Zhang, S., Ide, J.S., and Li, C.S. (2012). "Resting-State Functional Connectivity of the Medial Superior Frontal Cortex". Cereb. Cortex. 22 (1): 99–111. doi:10.1093/cercor/bhr088. PMC   3236794 . PMID   21572088.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. 1 2 Penfield, W. & Welch, K (1951). "The supplementary motor area of the cerebral cortex: A clinical and experimental study". A.M.A. Arch. Neurol. Psychiatry. 66 (3): 289–317. doi:10.1001/archneurpsyc.1951.02320090038004. PMID   14867993.
  19. Woolsey, C.N., Settlage, P.H., Meyer, D.R., Sencer, W., Hamuy, T.P. and Travis, A.M. (1952). "Pattern of localization in precentral and "supplementary" motor areas and their relation to the concept of a premotor area". Association for Research in Nervous and Mental Disease. 30. New York, NY: Raven Press: 238–264.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  20. Gould, H.J. III, Cusick, C.G., Pons, T.P. and Kaas, J.H (1996). "The relationship of corpus callosum connections to electrical stimulation maps of motor, supplementary motor, and the frontal eye fields in owl monkeys". J. Comp. Neurol. 247 (3): 297–325. doi:10.1002/cne.902470303. PMID   3722441. S2CID   21185898.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. Muakkassa, K.F. & Strick, P.L (1979). "Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized 'premotor' areas". Brain Res. 177 (1): 176–182. doi:10.1016/0006-8993(79)90928-4. PMID   115545. S2CID   34047716.
  22. Mitz, A.R. & Wise, S.P (1987). "The somatotopic organization of the supplementary motor area: intracortical microstimulation mapping". J. Neurosci. 7 (4): 1010–1021. doi: 10.1523/JNEUROSCI.07-04-01010.1987 . PMC   6568999 . PMID   3572473.
  23. Gaymard, B, Pierrot=Deseilligny, C. and Rivaud, S (1990). "Impairment of sequences of memory-guided saccades after supplementary motor area lesions". Annals of Neurology. 28 (5): 622–626. doi:10.1002/ana.410280504. PMID   2260848. S2CID   31214017.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  24. Gerloff, C., Corwell, B., Chen, R., Hallett, M. and Cohen, L.G (1997). "Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences". Brain. 120 (9): 1587–1602. doi: 10.1093/brain/120.9.1587 . PMID   9313642.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  25. Jenkins, I.H., Brooks, D.J., Nixon, P.D., Frackowiak, R.S. and Passingham, R.E (1994). "Motor sequence learning: a study with positron emission tomography". J. Neurosci. 14 (6): 3775–3790. doi: 10.1523/JNEUROSCI.14-06-03775.1994 . PMC   6576955 . PMID   8207487.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  26. Lee, D. & Quessy, S (2003). "Activity in the supplementary motor area related to learning and performance during a sequential visuomotor task". J. Neurophysiol. 89 (2): 1039–1056. doi:10.1152/jn.00638.2002. PMID   12574479.
  27. Mushiake, H., Inase, M. and Tanjii, J (1990). "Selective coding of motor sequence in the supplementary motor area of the monkey cerebral cortex". Exp. Brain Res. 82 (1): 208–210. doi:10.1007/bf00230853. PMID   2257906. S2CID   33522843.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  28. Shima, K. & Tanji, J (1998). "Both supplementary and presupplementary motor areas are crucial for the temporal organization of multiple movements". J. Neurophysiol. 80 (6): 3247–3260. doi:10.1152/jn.1998.80.6.3247. PMID   9862919.
  29. 1 2 Roland, P.E., Larsen, B., Lassen, N.A. and Skinhoj, E (1980). "Supplementary motor area and other cortical areas in organization of voluntary movements in man". J. Neurophysiol. 43 (1): 118–136. doi:10.1152/jn.1980.43.1.118. PMID   7351547.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  30. 1 2 Roland, P.E., Skinhoj, E., Lassen, N.A. and Larsen, B. (1980). "Different cortical areas in man in organization of voluntary movements in extrapersonal space". J. Neurophysiol. 43 (1): 137–150. doi:10.1152/jn.1980.43.1.137. PMID   7351548.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  31. Brinkman, C (1981). "Lesions in supplementary motor area interfere with a monkey's performance of a bimanual coordination task". Neurosci. Lett. 27 (3): 267–270. doi:10.1016/0304-3940(81)90441-9. PMID   7329632. S2CID   41060226.
  32. Serrien, D.J., Strens, L.H., Oliveiero, A. and Brown, P (2002). "Repetitive transcranial magnetic stimulation of the supplementary motor area (SMA) degrades bimanual movement control in humans". Neurosci. Lett. 328 (2): 89–92. doi:10.1016/s0304-3940(02)00499-8. PMID   12133562. S2CID   35568770.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  33. Halsband, U., Matsuzaka, Y. and Tanji, J. (1994). "Neuronal activity in the primate supplementary, pre-supplementary and premotor cortex during externally and internally instructed sequential movements". Neurosci. Res. 20 (2): 149–155. doi:10.1016/0168-0102(94)90032-9. PMID   7808697. S2CID   5930996.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  34. Picard, N. & Strick, P.L (September 2003). "Activation of the supplementary motor area (SMA) during performance of visually guided movements". Cereb. Cortex. 13 (9): 977–986. doi: 10.1093/cercor/13.9.977 . PMID   12902397.
  35. Deecke L, Kornhuber (1978). "supplementary" motor cortex in human voluntary finger movements". Brain Res. 159 (2): 473–476. doi:10.1016/0006-8993(78)90561-9. PMID   728816. S2CID   43904948.
  36. Cunnington R, Windischberger C, Deecke L, Moser E (2003). "The preparation and readiness for voluntary movement: a high-field event-related fMRI study of the Bereitschafts-BOLD response". NeuroImage. 20 (1): 404–412. doi:10.1016/s1053-8119(03)00291-x. PMID   14527600. S2CID   13419573.
  37. Nguyen VT, Breakspear M, Cunnington R (2014). "Reciprocal interactions of the SMA and cingulate cortex sustain pre-movement activity for voluntary actions". J Neurosci. 34 (49): 16397–16407. doi:10.1523/jneurosci.2571-14.2014. PMC   6608485 . PMID   25471577.
  38. 1 2 Graziano, M.S.A. (2008). The Intelligent Movement Machine. Oxford, UK: Oxford University Press.
  39. Graziano, M.S.A. and Aflalo, T.N. (2007). "Mapping behavioral repertoire onto the cortex" (PDF). Neuron. 56 (2): 239–251. doi: 10.1016/j.neuron.2007.09.013 . PMID   17964243.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  40. Graziano, M.S.A., Aflalo, T.N. and Cooke, D.F (2005). "Arm movements evoked by electrical stimulation in the motor cortex of monkeys". J. Neurophysiol. 94 (6): 4209–4223. doi:10.1152/jn.01303.2004. PMID   16120657.{{cite journal}}: CS1 maint: multiple names: authors list (link)

Further reading