Spinothalamic tract

Last updated
Spinothalamic tract
Gray672.png
Diagram of the main tracts within the spinal cord - spinothalamic fasciculus is labelled at bottom left
Details
Part of Spinal cord
System Somatosensory system
Decussation Anterior white commissure
PartsAnterior and lateral tracts
From Skin
To Thalamus
Artery Anterior spinal artery
FunctionGross touch and temperature
Identifiers
Latin tractus spinothalamicus
MeSH D013133
NeuroNames 2058, 810
TA98 A14.1.04.138
TA2 6102
FMA 72644
Anatomical terms of neuroanatomy

The spinothalamic tract is a part of the anterolateral system or the ventrolateral system, a sensory pathway to the thalamus. From the ventral posterolateral nucleus in the thalamus, sensory information is relayed upward to the somatosensory cortex of the postcentral gyrus.

Contents

The spinothalamic tract consists of two adjacent pathways: anterior and lateral. The anterior spinothalamic tract carries information about crude touch. The lateral spinothalamic tract conveys pain and temperature.

In the spinal cord, the spinothalamic tract has somatotopic organization. This is the segmental organization of its cervical, thoracic, lumbar, and sacral components, which is arranged from most medial to most lateral respectively.

The pathway crosses over (decussates) at the level of the spinal cord, rather than in the brainstem like the dorsal column-medial lemniscus pathway and lateral corticospinal tract. It is one of the three tracts which make up the anterolateral system.

Structure

The anterior and lateral spinothalamic tracts labelled at lower right as tracts of the anterolateral system. Spinal cord tracts - English.svg
The anterior and lateral spinothalamic tracts labelled at lower right as tracts of the anterolateral system.

There are two main parts of the spinothalamic tract:

The spinothalamic tract, like the dorsal column-medial lemniscus pathway, uses three neurons to convey sensory information from the periphery to conscious level at the cerebral cortex.

Pseudounipolar neurons in the dorsal root ganglion have axons that lead from the skin into the dorsal spinal cord where they ascend or descend one or two vertebral levels via Lissauer's tract and then synapse with secondary neurons in either the substantia gelatinosa of Rolando or the nucleus proprius. These secondary neurons are called tract cells.

The axons of the tract cells cross over (decussate) to the other side of the spinal cord via the anterior white commissure, and to the anterolateral corner of the spinal cord (hence the spinothalamic tract being part of the anterolateral system). Decussation usually occurs 1-2 spinal nerve segments above the point of entry. The axons travel up the length of the spinal cord into the brainstem, specifically the rostral ventromedial medulla.

Traveling up the brainstem, the tract moves dorsally. The neurons ultimately synapse with third-order neurons in several nuclei of the thalamus—including the medial dorsal, ventral posterior lateral, and ventral posterior medial nuclei. From there, signals go to the cingulate cortex, the primary somatosensory cortex, and insular cortex respectively.

Anterior spinothalamic tract

The anterior spinothalamic tract (Latin: tractus spinothalamicus anterior) or ventral spinothalamic fasciculus situated in the marginal part of the anterior funiculus and intermingled more or less with the vestibulospinal tract, is derived from cells in the posterior column or intermediate gray matter of the opposite side. fibres carry sensory information pertaining to crude touch from the skin. After entering the spinal cord the first order neurons synapse (in the nucleus proprius), and the second order neurons decussate via the anterior white commissure. These second order neurons ascend synapsing in the VPL of the thalamus. Incoming first order neurons can ascend or descend via the Lissauer tract.

This is a somewhat doubtful fasciculus and its fibers are supposed to end in the thalamus and to conduct certain of the touch impulses. More specifically, its fibers convey crude touch information to the VPL (ventral posterolateral nucleus) part of the thalamus.

The fibers of the anterior spinothalamic tract conduct information about pressure and crude touch (protopathic). The fine touch (epicritic) is conducted by fibers of the medial lemniscus. The medial lemniscus is formed by the axons of the neurons of the gracilis and cuneatus nuclei of the medulla oblongata which receive information about light touch, vibration and conscient proprioception from the gracilis and cuneatus fasciculus of the spinal cord. This fasciculus receive the axons of the first order neuron which is located in the dorsal root ganglion that receives afferent fibers from receptors in the skin, muscles and joints.

Lateral spinothalamic tract

The lateral spinothalamic tract (or lateral spinothalamic fasciculus), is a bundle of afferent nerve fibers ascending through the white matter of the spinal cord, in the spinothalamic tract, carrying sensory information to the brain. It carries pain, and temperature sensory information (protopathic sensation) to the thalamus. It is composed primarily of fast-conducting, sparsely myelinated A delta fibers and slow-conducting, unmyelinated C fibers. These are secondary sensory neurons which have already synapsed with the primary sensory neurons of the peripheral nervous system in the posterior horn of the spinal cord (one of the three grey columns).

Together with the anterior spinothalamic tract, the lateral spinothalamic tract is sometimes termed the secondary sensory fasciculus or spinal lemniscus.

Anatomy

The neurons of the lateral spinothalamic tract originate in the spinal dorsal root ganglia. They project peripheral processes to the tissues in the form of free nerve endings which are sensitive to molecules indicative of cell damage. The central processes enter the spinal cord in an area at the back of the posterior horn known as the posterolateral tract. Here, the processes ascend approximately two levels before synapsing on second-order neurons. These secondary neurons are situated in the posterior horn, specifically in the Rexed laminae regions I, IV, V and VI. Region II is primarily composed of Golgi II interneurons, which are primarily for the modulation of pain, and largely project to secondary neurons in regions I and V. Secondary neurons from regions I and V decussate across the anterior white commissure and ascend in the (now contralateral) lateral spinothalamic tract. These fibers will ascend through the brainstem, including the medulla oblongata, pons and midbrain, as the spinal lemniscus until synapsing in the ventroposteriorlateral (VPL) nucleus of the thalamus. The third order neurons in the thalamus will then project through the internal capsule and corona radiata to various regions of the cortex, primarily the main somatosensory cortex, Brodmann areas 3, 1, and 2.

Function

The types of sensory information means that the sensation is accompanied by a compulsion to act. For instance, an itch is accompanied by a need to scratch, and a painful stimulus makes us want to withdraw from the pain.[ citation needed ]

There are two sub-systems identified:

Anterolateral system

In the nervous system, the anterolateral system is an ascending pathway that conveys pain, [1] temperature (protopathic sensation), and crude touch from the periphery to the brain. It comprises three main pathways:

NameDestinationFunction
spinothalamic tract (lateral and anterior) thalamus important in the localization of painful or thermal stimuli
spinoreticular tract reticular formation causes alertness and arousal in response to painful stimuli
spinotectal tract tectum orients the eyes and head towards the stimuli

Clinical significance

In contrast to the axons of second-order neurons in dorsal column-medial lemniscus pathway, the axons of second-order neurons in the spinothalamic tracts cross at every segmental level in the spinal cord. This fact aids in determining whether a lesion is in the brain or the spinal cord. With lesions in the brain stem or higher, deficits of pain perception, touch sensation, and proprioception are all contralateral to the lesion. With spinal cord lesions, however, the deficit in pain perception is contralateral to the lesion, whereas the other deficits are ipsilateral. See Brown-Séquard syndrome.

Unilateral lesions usually cause contralateral anaesthesia (loss of pain and temperature). Anaesthesia will normally begin 1-2 segments below the level of lesion, due to the sensory fibers being carried by dorsal-lateral tract of Lissauer up several levels upon entry into the spinal cord, and will affect all caudal body areas. This is clinically tested by using pin pricks.

See also

Related Research Articles

<span class="mw-page-title-main">Medulla oblongata</span> Structure of the brain stem

The medulla oblongata or simply medulla is a long stem-like structure which makes up the lower part of the brainstem. It is anterior and partially inferior to the cerebellum. It is a cone-shaped neuronal mass responsible for autonomic (involuntary) functions, ranging from vomiting to sneezing. The medulla contains the cardiac, respiratory, vomiting and vasomotor centers, and therefore deals with the autonomic functions of breathing, heart rate and blood pressure as well as the sleep–wake cycle.

Articles related to anatomy include:

<span class="mw-page-title-main">Brainstem</span> Posterior part of the brain, adjoining and structurally continuous

The brainstem is the stalk-like part of the brain that interconnects the cerebrum and diencephalon with the spinal cord. In the human brain, the brainstem is composed of the midbrain, the pons, and the medulla oblongata. The midbrain is continuous with the thalamus of the diencephalon through the tentorial notch.

<span class="mw-page-title-main">Trigeminal nerve</span> Cranial nerve responsible for the faces senses and motor functions

In neuroanatomy, the trigeminal nerve (lit. triplet nerve), also known as the fifth cranial nerve, cranial nerve V, or simply CN V, is a cranial nerve responsible for sensation in the face and motor functions such as biting and chewing; it is the most complex of the cranial nerves. Its name (trigeminal, from Latin tri- 'three', and -geminus 'twin') derives from each of the two nerves (one on each side of the pons) having three major branches: the ophthalmic nerve (V1), the maxillary nerve (V2), and the mandibular nerve (V3). The ophthalmic and maxillary nerves are purely sensory, whereas the mandibular nerve supplies motor as well as sensory (or "cutaneous") functions. Adding to the complexity of this nerve is that autonomic nerve fibers as well as special sensory fibers (taste) are contained within it.

<span class="mw-page-title-main">Internal capsule</span> White matter structure situated in the inferomedial part of each cerebral hemisphere of the brain

The internal capsule is a white matter structure situated in the inferomedial part of each cerebral hemisphere of the brain. It carries information past the basal ganglia, separating the caudate nucleus and the thalamus from the putamen and the globus pallidus. The internal capsule contains both ascending and descending axons, going to and coming from the cerebral cortex. It also separates the caudate nucleus and the putamen in the dorsal striatum, a brain region involved in motor and reward pathways.

<span class="mw-page-title-main">Dorsal column–medial lemniscus pathway</span> Sensory spinal pathway

The dorsal column–medial lemniscus pathway (DCML) is a sensory pathway of the central nervous system that conveys sensations of fine touch, vibration, two-point discrimination, and proprioception from the skin and joints. It transmits information from the body to the primary somatosensory cortex in the postcentral gyrus of the parietal lobe of the brain. The pathway receives information from sensory receptors throughout the body, and carries this in nerve tracts in the white matter of the dorsal column of the spinal cord to the medulla, where it is continued in the medial lemniscus, on to the thalamus and relayed from there through the internal capsule and transmitted to the somatosensory cortex. The name dorsal-column medial lemniscus comes from the two structures that carry the sensory information: the dorsal columns of the spinal cord, and the medial lemniscus in the brainstem.

<span class="mw-page-title-main">Medial lemniscus</span> Ascending bundle of axons which cross in the brainstem

In neuroanatomy, the medial lemniscus, also known as Reil's band or Reil's ribbon, is a large ascending bundle of heavily myelinated axons that decussate (cross) in the brainstem, specifically in the medulla oblongata. The medial lemniscus is formed by the crossings of the internal arcuate fibers. The internal arcuate fibers are composed of axons of nucleus gracilis and nucleus cuneatus. The axons of the nucleus gracilis and nucleus cuneatus in the medial lemniscus have cell bodies that lie contralaterally.

<span class="mw-page-title-main">Spinocerebellar tract</span> Nerve tract in humans

The spinocerebellar tract is a nerve tract originating in the spinal cord and terminating in the same side (ipsilateral) of the cerebellum.

<span class="mw-page-title-main">Dorsal root of spinal nerve</span>

The dorsal root of spinal nerve is one of two "roots" which emerge from the spinal cord. It emerges directly from the spinal cord, and travels to the dorsal root ganglion. Nerve fibres with the ventral root then combine to form a spinal nerve. The dorsal root transmits sensory information, forming the afferent sensory root of a spinal nerve.

The dorsal longitudinal fasciculus (DLF) is a longitudinal tract interconnecting the posterior hypothalamus, and the inferior medulla oblongata. It contains both ascending tracts and descending tracts, and serves to link the forebrain, and the visceral autonomic centres of the lower brainstem. It conveys both visceral motor signals, and sensory signals.

<span class="mw-page-title-main">Dorsal column nuclei</span> Nuclei in the dorsal column of the brainstem

In neuroanatomy, the dorsal column nuclei are a pair of nuclei in the dorsal columns in the brainstem. The name refers collectively to the cuneate nucleus and gracile nucleus, which are situated at the lower end of the medulla oblongata. Both nuclei contain second-order neurons of the dorsal column–medial lemniscus pathway, which convey fine touch and proprioceptive information from the body to the brain. The dorsal column nuclei project to the thalamus.

<span class="mw-page-title-main">Posterolateral tract</span>

The posterolateral tract is a small strand situated in relation to the tip of the posterior column close to the entrance of the posterior nerve roots. It is present throughout the spinal cord, and is most developed in the upper cervical regions.

Cutaneous innervation refers to an area of the skin which is supplied by a specific cutaneous nerve.

The isothalamus is a division used by some researchers in describing the thalamus.

<span class="mw-page-title-main">Brown-Séquard syndrome</span> Human spinal cord disorder

Brown-Séquard syndrome is caused by damage to one half of the spinal cord, i.e. hemisection of the spinal cord resulting in paralysis and loss of proprioception on the same side as the injury or lesion, and loss of pain and temperature sensation on the opposite side as the lesion. It is named after physiologist Charles-Édouard Brown-Séquard, who first described the condition in 1850.

The ventral trigeminal tract, ventral trigeminothalamic tract, anterior trigeminal tract, or anterior trigeminothalamic tract, is a tract composed of second order neuronal axons. These fibers carry sensory information about discriminative and crude touch, conscious proprioception, pain, and temperature from the head, face, and oral cavity. The ventral trigeminal tract connects the two major components of the brainstem trigeminal complex – the principal, or main sensory nucleus and the spinal trigeminal nucleus, to the ventral posteromedial nucleus of the thalamus.

The trigeminal lemniscus, also called the trigeminothalamic tract, is composed of the ventral trigeminal tract, and the dorsal trigeminal tract – nerve tracts that convey tactile, pain, and temperature impulses from the skin of the face, the mucous membranes of the nasal and oral cavities, and the eye, as well as proprioceptive information from the facial and masticatory muscles.

The dorsal trigeminal tract, dorsal trigeminothalamic tract, or posterior trigeminothalamic tract, is composed of second-order neuronal axons. These fibers carry sensory information about discriminative touch and conscious proprioception in the oral cavity from the principal nucleus of the trigeminal nerve to the ventral posteromedial (VPM) nucleus of the thalamus.

<span class="mw-page-title-main">Spinal cord</span> Long, tubular central nervous system structure in the vertebral column

The spinal cord is a long, thin, tubular structure made up of nervous tissue that extends from the medulla oblongata in the brainstem to the lumbar region of the vertebral column (backbone) of vertebrate animals. The center of the spinal cord is hollow and contains a structure called central canal, which contains cerebrospinal fluid. The spinal cord is also covered by meninges and enclosed by the neural arches. Together, the brain and spinal cord make up the central nervous system.

References

PD-icon.svgThis article incorporates text in the public domain from page 760 of the 20th edition of Gray's Anatomy (1918)

  1. "Chapter 25:Neural Mechanisms of Cardiac Pain: The Anterolateral System". Archived from the original on 2010-08-11. Retrieved 2009-11-26.