Basilar part of pons

Last updated
Basilar part of pons
Pons section at facial colliculus.png
Brainstem (basilar part of pons not labeled, but is visible at bottom)
Details
Identifiers
Latin Pars basilaris pontis, basis pontis
NeuroNames 616
NeuroLex ID birnlex_1043
TA98 A14.1.05.101
TA2 5925
FMA 72244
Anatomical terms of neuroanatomy

The basilar part of pons, also known as basis pontis, is the ventral part of the pons; the dorsal part is known as the pontine tegmentum.

Contents

The basilar pons makes up two thirds of the pons within the brainstem. [1] It has a ridged appearance with a shallow groove at the midline. This groove is called the basilar sulcus and is covered by the basilar artery, [2] which feeds into the Circle of Willis and provides blood supply to the brainstem and cerebellum. [3] The basilar pons has this kind of appearance due to the fibers that come out of the pons and enter the cerebellum. [2] This part of the brainstem contains fibers from the corticospinal tract (a descending pathway for neurons to reach other structures in the body), pontine nuclei, and transverse pontine fibers. [1] The corticospinal tract carries neurons from the primary motor cortex in the brain to the spinal cord, aiding in voluntary motor movement of the body. In addition to passing through the basilar pons, corticospinal tract fibers go through other structures of the brainstem, such as the internal capsule and the crus cerebri. [4]

An integral part of the basilar pons is the pontine nuclei. The pontine nuclei are responsible for projecting axons that go to the opposite cerebellar hemisphere through the middle cerebellar peduncle. Doing this makes the axons change into the transverse pontine fibers. [1] The fibers of the pontine nuclei are all important to motor function, including fiber bundles such as the corticospinal fibers and corticopontine-pontocerebellar system. [5] Specifically, the basilar pons contains all the corticofugal fibers, which include the corticospinal, corticobulbar (or corticonuclear), and corticopontine fibers. [6] The basal pontine nuclei provides the most information to the cerebellum. These pontine nuclei are integral in helping the basilar pons carry information from the cerebral cortex to the cerebellum. The basilar pons is able to do this via the corticopontine fibers that it receives. Once the information passes from the cerebral cortex to the basilar pons and then finally to the cerebellum, the cerebellum gets information regarding complex cognitive functions. [7]

Clinical significance

Tissue death (infarction), in this region can impair motor functioning. [8] A lacunar stroke of the base of the pons is known to cause contralateral dysarthria-clumsy hand syndrome.

The basis pons undergoes demyelination in the condition known as central pontine myelinolysis. This condition is due to the rapid intravenous correction of hyponatremia.

Related Research Articles

Cerebellum Structure at the rear of the vertebrate brain, beneath the cerebrum

The cerebellum is a major feature of the hindbrain of all vertebrates. Although usually smaller than the cerebrum, in some animals such as the mormyrid fishes it may be as large as or even larger. In humans, the cerebellum plays an important role in motor control. It may also be involved in some cognitive functions such as attention and language as well as emotional control such as regulating fear and pleasure responses, but its movement-related functions are the most solidly established. The human cerebellum does not initiate movement, but contributes to coordination, precision, and accurate timing: it receives input from sensory systems of the spinal cord and from other parts of the brain, and integrates these inputs to fine-tune motor activity. Cerebellar damage produces disorders in fine movement, equilibrium, posture, and motor learning in humans.

Pons Part of the brainstem in humans and other bipeds

The pons is part of the brainstem that in humans and other bipeds lies inferior to the midbrain, superior to the medulla oblongata and anterior to the cerebellum.

Brainstem Posterior part of the brain, adjoining and structurally continuous

The brainstem is the posterior stalk-like part of the brain that connects the cerebrum with the spinal cord. In the human brain the brainstem is composed of the midbrain, the pons, and the medulla oblongata. The midbrain is continuous with the thalamus of the diencephalon through the tentorial notch, and sometimes the diencephalon is included in the brainstem.

In neuroanatomy, a nucleus is a cluster of neurons in the central nervous system, located deep within the cerebral hemispheres and brainstem. The neurons in one nucleus usually have roughly similar connections and functions. Nuclei are connected to other nuclei by tracts, the bundles (fascicles) of axons extending from the cell bodies. A nucleus is one of the two most common forms of nerve cell organization, the other being layered structures such as the cerebral cortex or cerebellar cortex. In anatomical sections, a nucleus shows up as a region of gray matter, often bordered by white matter. The vertebrate brain contains hundreds of distinguishable nuclei, varying widely in shape and size. A nucleus may itself have a complex internal structure, with multiple types of neurons arranged in clumps (subnuclei) or layers.

Cerebral peduncle

The cerebral peduncles are the two stalks that attach the cerebrum to the brainstem. They are structures at the front of the midbrain which arise from the ventral pons and contain the large ascending (sensory) and descending (motor) nerve tracts that run to and from the cerebrum from the pons. Mainly, the three common areas that give rise to the cerebral peduncles are the cerebral cortex, the spinal cord and the cerebellum. The region includes the tegmentum, crus cerebri and pretectum. By this definition, the cerebral peduncles are also known as the basis pedunculi, while the large ventral bundle of efferent fibers is referred to as the cerebral crus or the pes pedunculi.

Internal capsule

The internal capsule is a white matter structure situated in the inferomedial part of each cerebral hemisphere of the brain. It carries information past the basal ganglia, separating the caudate nucleus and the thalamus from the putamen and the globus pallidus. The internal capsule contains both ascending and descending axons, going to and coming from the cerebral cortex. It also separates the caudate nucleus and the putamen in the dorsal striatum, a brain region involved in motor and reward pathways.

Neural pathway

A neural pathway is the connection formed by axons that project from neurons to make synapses onto neurons in another location, to enable a signal to be sent from one region of the nervous system to another. Neurons are connected by a single axon, or by a bundle of axons known as a nerve tract, or fasciculus. Shorter neural pathways are found within grey matter in the brain, whereas longer projections, made up of myelinated axons, constitute white matter.

Pyramidal tracts

The pyramidal tracts include both the corticobulbar tract and the corticospinal tract. These are aggregations of efferent nerve fibers from the upper motor neurons that travel from the cerebral cortex and terminate either in the brainstem (corticobulbar) or spinal cord (corticospinal) and are involved in the control of motor functions of the body.

Reticular formation Spinal trigeminal nucleus

The reticular formation is a set of interconnected nuclei that are located throughout the brainstem. It is not anatomically well defined, because it includes neurons located in different parts of the brain. The neurons of the reticular formation make up a complex set of networks in the core of the brainstem that extend from the upper part of the midbrain to the lower part of the medulla oblongata. The reticular formation includes ascending pathways to the cortex in the ascending reticular activating system (ARAS) and descending pathways to the spinal cord via the reticulospinal tracts.

Pontine tegmentum

The pontine tegmentum, or dorsal pons, is located within the brainstem, and is one of two parts of the pons, the other being the ventral pons or basilar part of the pons. The pontine tegmentum can be defined in contrast to the basilar pons: basilar pons contains the corticospinal tract running craniocaudally and can be considered the rostral extension of the ventral medulla oblongata; however, basilar pons is distinguished from ventral medulla oblongata in that it contains additional transverse pontine fibres that continue laterally to become the middle cerebellar peduncle. The pontine tegmentum is all the material dorsal from the basilar pons to the fourth ventricle. Along with the dorsal surface of the medulla, it forms part of the rhomboid fossa – the floor of the fourth ventricle.

Pontine nuclei

The pontine nuclei are the nuclei of the pons involved in motor activity. The pontine nuclei are located in the ventral pons. Corticopontine fibres carry information from the primary motor cortex to the ipsilateral pontine nucleus in the ventral pons, and the pontocerebellar projection then carries that information to the contralateral cerebellum via the middle cerebellar peduncle. Extension of these nuclei in the medulla oblongata are named arcuate nucleus (medulla) which has the same function.

Spinocerebellar tract

The spinocerebellar tract is a nerve tract originating in the spinal cord and terminating in the same side (ipsilateral) of the cerebellum.

Dentate nucleus Nucleus in the centre of each cerebellar hemisphere

The dentate nucleus is a cluster of neurons, or nerve cells, in the central nervous system that has a dentate – tooth-like or serrated – edge. It is located within the deep white matter of each cerebellar hemisphere, and it is the largest single structure linking the cerebellum to the rest of the brain. It is the largest and most lateral, or farthest from the midline, of the four pairs of deep cerebellar nuclei, the others being the globose and emboliform nuclei, which together are referred to as the interposed nucleus, and the fastigial nucleus. The dentate nucleus is responsible for the planning, initiation and control of voluntary movements. The dorsal region of the dentate nucleus contains output channels involved in motor function, which is the movement of skeletal muscle, while the ventral region contains output channels involved in nonmotor function, such as conscious thought and visuospatial function.

Flocculus

The flocculus is a small lobe of the cerebellum at the posterior border of the middle cerebellar peduncle anterior to the biventer lobule. Like other parts of the cerebellum, the flocculus is involved in motor control. It is an essential part of the vestibulo-ocular reflex, and aids in the learning of basic motor skills in the brain.

Superior cerebellar peduncle

In the human brain, the superior cerebellar peduncle is a paired structure of white matter that connects the cerebellum to the midbrain. It consists mainly of efferent fibers, the cerebellothalamic tract that runs from a cerebellar hemisphere to the contralateral thalamus, and the cerebellorubral tract that runs from a cerebellar hemisphere to the red nucleus. It also contains afferent tracts, most prominent of which is the ventral spinocerebellar tract. Other afferent tracts are the trigeminothalamic fibers, tectocerebellar fibers, and noradrenergic fibers from the locus coeruleus. The superior peduncle emerges from the upper and medial parts of the white matter of each hemisphere and is placed under cover of the upper part of the cerebellum.

Middle cerebellar peduncle Structure in the brain connecting the pons to the cerebellum

The middle cerebellar peduncle is a paired structure of the brain. It connects the pons to the cerebellum, with fibres originating from the pontine nucleus and travelling to the opposite hemisphere of the cerebellar cortex. It is supplied by the anterior inferior cerebellar artery (AICA) and branches from the basilar artery. It conveys information from the cerebrum and the pons to the cerebellum.

The paramedian arteries, or posteromedial central arteries, are pontine arteries – branches of the basilar artery that supply the pontine nuclei, corticobulbar tract, corticospinal tract, and corticopontine tract, with rami supplying some middle cerebellar peduncle fibres, parts of the pontine tegmentum, and occasionally the medial part of the medial lemniscus.

Anatomy of the cerebellum Structures in the cerebellum, a part of the brain

The anatomy of the cerebellum can be viewed at three levels. At the level of gross anatomy, the cerebellum consists of a tightly folded and crumpled layer of cortex, with white matter underneath, several deep nuclei embedded in the white matter, and a fluid-filled ventricle in the middle. At the intermediate level, the cerebellum and its auxiliary structures can be broken down into several hundred or thousand independently functioning modules or compartments known as microzones. At the microscopic level, each module consists of the same small set of neuronal elements, laid out with a highly stereotyped geometry.

Cerebellar cognitive affective syndrome (CCAS), also called Schmahmann's syndrome is a condition that follows from lesions (damage) to the cerebellum of the brain. It refers to a constellation of deficits in the cognitive domains of executive function, spatial cognition, language, and affect resulting from damage to the cerebellum. Impairments of executive function include problems with planning, set-shifting, abstract reasoning, verbal fluency, and working memory, and there is often perseveration, distractibility and inattention. Language problems include dysprosodia, agrammatism and mild anomia. Deficits in spatial cognition produce visual–spatial disorganization and impaired visual–spatial memory. Personality changes manifest as blunting of affect or disinhibited and inappropriate behavior. These cognitive impairments result in an overall lowering of intellectual function. CCAS challenges the traditional view of the cerebellum being responsible solely for regulation of motor functions. It is now thought that the cerebellum is responsible for monitoring both motor and nonmotor functions. The nonmotor deficits described in CCAS are believed to be caused by dysfunction in cerebellar connections to the cerebral cortex and limbic system.

References

PD-icon.svgThis article incorporates text in the public domain from page 785 of the 20th edition of Gray's Anatomy (1918)

  1. 1 2 3 Johns, P. (2014). Clinical Neuroscience. Elsevier Health Sciences. pp. 27–47.
  2. 1 2 Michael-Titus, A. (2010). The Nervous System: Second Edition. Churchill Livingstone.
  3. Adigun, O. (2020). Anatomy, Head and Neck, Basilar Artery. StatPearls Publishing. PMID   29083786.
  4. Gould, D.J. (2016). Nolte's the Human Brain: An Introduction to its Functional Anatomy. Elsevier Health Sciences.
  5. Mihailoff, G.A.; Haines, D.E. (2018), "The Pons and Cerebellum", Fundamental Neuroscience for Basic and Clinical Applications, Elsevier, pp. 172–182, doi:10.1016/b978-0-323-39632-5.00012-8, ISBN   978-0-323-39632-5
  6. "The Corticospinal Pathway--Pons". Neuroanatomy Online.
  7. Schmahmann, Jeremy D.; Pandya, Deepak N. (October 1995). "Prefrontal cortex projections to the basilar pons in rhesus monkey: implications for the cerebellar contribution to higher function". Neuroscience Letters. 199 (3): 175–178. doi:10.1016/0304-3940(95)12056-A. PMID   8577391. S2CID   42572383.
  8. Schmahmann JD, Ko R, MacMore J (June 2004). "The human basis pontis: motor syndromes and topographic organization". Brain. 127 (Pt 6): 1269–91. doi: 10.1093/brain/awh138 . PMID   15128614.