Merkel nerve ending

Last updated

Merkel nerve endings (also Merkel's disks, [1] or Merkel tactile endings [2] ) are mechanoreceptors situated in the basal epidermis as well as around the apical ends or some hair follicles. [2] They are slowly adapting They have small receptive fields measuring some milimeters in diameter. Most are associated with fast-conducting large myelinated axons. [1] A single afferent nerve fibre branches to innervate up to 90 such endings.[ citation needed ] Merkel nerve endings respond to light touch. [1] They respond to sustained pressure, and are sensitive to edges of objects. Their exact functions remain controversial. [2]

Contents

The Merkel nerve endings consist of a nerve ending associated with a flattened epithelial cell (Merkel cell); both the nerve ending and Merkel cell are independently mechanosensitive. The Merkel cell expresses the PIEZO2 mechanosensitive ion channels; mechanical activation of the channel causes depolarisation of the Merkel cell and consequent release of [1] serotonin into a synapse with the associated nerve ending, to also depolarise the later. [3] The nerve ending meanwhile expresses an unknown mechanosensitive channel. [1]

Location

Merkel nerve endings have a widely distributed in glabrous and hairy skin, in hair follicles, and in oral and anal mucosa.[ citation needed ]

Meckel nerve endings are most numerous beneath the ridges of the fingertips which make up fingerprints, and less so in the palms and forearm.[ citation needed ]

They can be found at a depth of 900 [µm] in human fingertips [4]

In hairy skin, Merkel nerve endings are clustered into specialized epithelial structures called "touch domes" or "hair disks". Merkel receptors are also located in the mammary glands. Wherever they are found, the epithelium is arranged to optimize the transfer of pressure to the ending.[ citation needed ]

Functions

Merkel nerve endings provide information on pressure, position, and deep static touch features such as shapes and edges. They are tactile sensors in the business of mechanotransduction. They encode surface features of touched objects into perception, but also have to do with proprioception. [5]

Electrophysiology

The Merkel cell's somewhat rigid structure, and the fact that they are not encapsulated,[ clarification needed ] causes them respond to a sustained adequate mechanical stimulus with sustained "firing" of action potentials (or spikes): they are slowly adapting (contrast with the rapidly adapting Pacinian and Meissner's corpuscles).[ citation needed ]

Merkel nerve endings exhibit an initial dynamic vigorous response to sustained mechanical stimulus, with a subsequent the static plateau phase of continuous lower-rate firing that may persist for more than 30 minutes. The inter-spike intervals during sustained firing are irregular, in contrast to the highly regular pattern of inter-spike intervals obtained from slowly adapting type II mechanoreceptors.[ citation needed ] They fire fastest, when small points indent the skin, and fire at a low rate on slow curves or flat surfaces. Convexities reduce their rate of firing further still. [6]

Sensitivity and receptive fields

Merkel nerve endings are the most sensitive of the four main types of mechanoreceptors to vibrations at low frequencies, around 5 to 15 Hz. Merkel nerve endings are extremely sensitive to tissue displacement, and may respond to displacements of less than 1 μm. A mechanoreceptor's receptive field is the area within which a stimulus can excite the cell. If the skin is touched in two separate points within a single receptive field, the person will be unable to feel the two separate points. If the two points touched span more than a single receptive field then both will be felt. The size of mechanoreceptors' receptive fields in a given area determines the degree to which detailed stimuli can be resolved: the smaller and more densely clustered the receptive fields, the higher the resolution.[ citation needed ]

Type I afferent fibres have smaller receptive fields than type II fibres. Several studies indicate that type I fibres mediate high resolution tactile discrimination, and are responsible for the ability of our finger tips to feel fine detailed surface patterns (e.g. for reading Braille). Merkel's discs have small receptive fields which allow for them to detect fine spatial separation. They also have two point discrimination.[ citation needed ]

Eponym

Merkel's discs are named after German anatomist Friedrich Merkel (1845–1919), who was 30 years old when he described them. [7]

Diseases

Merkel endings are the first to be obliterated in burns.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Sensory nervous system</span> Part of the nervous system

The sensory nervous system is a part of the nervous system responsible for processing sensory information. A sensory system consists of sensory neurons, neural pathways, and parts of the brain involved in sensory perception and interoception. Commonly recognized sensory systems are those for vision, hearing, touch, taste, smell, balance and visceral sensation. Sense organs are transducers that convert data from the outer physical world to the realm of the mind where people interpret the information, creating their perception of the world around them.

<span class="mw-page-title-main">Free nerve ending</span> Type of nerve fiber carrying sensory signals

A free nerve ending (FNE) or bare nerve ending, is an unspecialized, afferent nerve fiber sending its signal to a sensory neuron. Afferent in this case means bringing information from the body's periphery toward the brain. They function as cutaneous nociceptors and are essentially used by vertebrates to detect noxious stimuli that often result in pain.

Stimulus modality, also called sensory modality, is one aspect of a stimulus or what is perceived after a stimulus. For example, the temperature modality is registered after heat or cold stimulate a receptor. Some sensory modalities include: light, sound, temperature, taste, pressure, and smell. The type and location of the sensory receptor activated by the stimulus plays the primary role in coding the sensation. All sensory modalities work together to heighten stimuli sensation when necessary.

A cutaneous receptor is the type of sensory receptor found in the skin. They are a part of the somatosensory system. Cutaneous receptors include mechanoreceptors, nociceptors (pain), and thermoreceptors (temperature).

A mechanoreceptor, also called mechanoceptor, is a sensory receptor that responds to mechanical pressure or distortion. Mechanoreceptors are innervated by sensory neurons that convert mechanical pressure into electrical signals that, in animals, are sent to the central nervous system.

<span class="mw-page-title-main">Tactile corpuscle</span> Type of mechanoreceptor that detects light touch

Tactile corpuscles or Meissner's corpuscles are a type of mechanoreceptor discovered by anatomist Georg Meissner (1829–1905) and Rudolf Wagner. This corpuscle is a type of nerve ending in the skin that is responsible for sensitivity to pressure. In particular, they have their highest sensitivity when sensing vibrations between 10 and 50 hertz. They are rapidly adaptive receptors. They are most concentrated in thick hairless skin, especially at the finger pads.

<span class="mw-page-title-main">Sensory neuron</span> Nerve cell that converts environmental stimuli into corresponding internal stimuli

Sensory neurons, also known as afferent neurons, are neurons in the nervous system, that convert a specific type of stimulus, via their receptors, into action potentials or graded receptor potentials. This process is called sensory transduction. The cell bodies of the sensory neurons are located in the dorsal root ganglia of the spinal cord.

<span class="mw-page-title-main">Dorsal root ganglion</span> Cluster of neurons in a dorsal root of a spinal nerve

A dorsal root ganglion is a cluster of neurons in a dorsal root of a spinal nerve. The cell bodies of sensory neurons known as first-order neurons are located in the dorsal root ganglia.

<span class="mw-page-title-main">Pacinian corpuscle</span> Type of mechanoreceptor cell in hairless mammals

The Pacinian corpuscle is a low-threshold mechanoreceptor responsive to vibration or pressure, found in the skin and other internal organs. In the skin it is one of the four main types of cutaneous receptors.

<span class="mw-page-title-main">Merkel cell</span> Receptors in the skin of vertebrates

Merkel cells, also known as Merkel–Ranvier cells or tactile epithelial cells, are oval-shaped mechanoreceptors essential for light touch sensation and found in the skin of vertebrates. They are abundant in highly sensitive skin like that of the fingertips in humans, and make synaptic contacts with somatosensory afferent nerve fibers. It has been reported that Merkel cells are derived from neural crest cells, though more recent experiments in mammals have indicated that they are epithelial in origin.

<span class="mw-page-title-main">Tactile corpuscles of Grandry</span>

The tactile corpuscles of Grandry or Grandry corpuscles are mechanoreceptors found in the beak skin and oral mucosa of aquatic birds. They were first described by Grandry in 1869 in the bill skin of ducks and geese. Their general structure includes the flattened endings of an afferent nerve fiber sandwiched between two or more somewhat flattened sensory cells called Grandry cells, all surrounded by a layer of satellite cells and a partial capsule of collagen protein. Electrophysiological studies have shown that Grandry corpuscles function as rapidly adapting velocity detectors. In birds, Grandry and Merkel corpuscles share many morphological similarities, which has led to some confusion in the literature over their classification.

<span class="mw-page-title-main">Microneurography</span> Medical diagnostic method

Microneurography is a neurophysiological method employed to visualize and record the traffic of nerve impulses that are conducted in peripheral nerves of waking human subjects. It can also be used in animal recordings. The method has been successfully employed to reveal functional properties of a number of neural systems, e.g. sensory systems related to touch, pain, and muscle sense as well as sympathetic activity controlling the constriction state of blood vessels. To study nerve impulses of an identified nerve, a fine tungsten needle microelectrode is inserted into the nerve and connected to a high input impedance differential amplifier. The exact position of the electrode tip within the nerve is then adjusted in minute steps until the electrode discriminates nerve impulses of interest. A unique feature and a significant strength of the microneurography method is that subjects are fully awake and able to cooperate in tests requiring mental attention, while impulses in a representative nerve fibre or set of nerve fibres are recorded, e.g. when cutaneous sense organs are stimulated or subjects perform voluntary precision movements.

Cutaneous innervation refers to an area of the skin which is supplied by a specific cutaneous nerve.

<span class="mw-page-title-main">Group C nerve fiber</span> One of three classes of nerve fiber in the nervous system

Group C nerve fibers are one of three classes of nerve fiber in the central nervous system (CNS) and peripheral nervous system (PNS). The C group fibers are unmyelinated and have a small diameter and low conduction velocity, whereas Groups A and B are myelinated. Group C fibers include postganglionic fibers in the autonomic nervous system (ANS), and nerve fibers at the dorsal roots. These fibers carry sensory information.

Eimer's organs are organs for the sense of touch, shaped like bulbous papillae, formed from modified epidermis. First isolated by Theodor Eimer from the European mole in 1871, these organs are present in many moles, and are particularly dense on the star-nosed mole, which bears 25,000 of them on its unique tentacled snout. The organs are formed from a stack of epidermal cells, which is innervated by myelinated fibers from the dermis, which form terminal swellings just below the keratinized outer surface of the epidermis. They contain a complex of Merkel cell and neurite in the epidermis, and a lamellated corpuscle in the dermal connective tissue.

Pallesthesia, or vibratory sensation, is the ability to perceive vibration. This sensation, often conducted through skin and bone, is usually generated by mechanoreceptors such as Pacinian corpuscles, Merkel disk receptors, and tactile corpuscles. All of these receptors stimulate an action potential in afferent nerves found in various layers of the skin and body. The afferent neuron travels to the spinal column and then to the brain where the information is processed. Damage to the peripheral nervous system or central nervous system can result in a decline or loss of pallesthesia.

Mechanosensation is the transduction of mechanical stimuli into neural signals. Mechanosensation provides the basis for the senses of light touch, hearing, proprioception, and pain. Mechanoreceptors found in the skin, called cutaneous mechanoreceptors, are responsible for the sense of touch. Tiny cells in the inner ear, called hair cells, are responsible for hearing and balance. States of neuropathic pain, such as hyperalgesia and allodynia, are also directly related to mechanosensation. A wide array of elements are involved in the process of mechanosensation, many of which are still not fully understood.

<span class="mw-page-title-main">Somatosensory system</span> Nerve system for sensing touch, temperature, body position, and pain

The somatosensory system, or somatic sensory system is a subset of the sensory nervous system. It has two subdivisions, one for the detection of mechanosensory information related to touch, and the other for the nociception detection of pain and temperature. The main functions of the somatosensory system are the perception of external stimuli, the perception of internal stimuli, and the regulation of body position and balance (proprioception).

Tactile induced analgesia is the phenomenon where concurrent touch and pain on the skin reduces the intensity of pain that is felt.

C tactile afferents are nerve receptors in mammalian skin that generally respond to nonpainful stimulation such as light touch. For this reason they are classified as ‘low-threshold mechanoreceptors’. As group C nerve fibers, they are unmyelinated and have slow conduction velocities. They are mostly associated with the sensation of pleasant touch, though they may also mediate some forms of pain. CT afferents were discovered by Åke Vallbo using the technique of microneurography.

References

  1. 1 2 3 4 5 Bear, Mark F.; Connors, Barry W.; Paradiso, Michael A. (2016). Neuroscience: Exploring the Brain (4th ed.). Philadelphia: Wolters Kluwer. pp. 417, 418, 420. ISBN   978-0-7817-7817-6.
  2. 1 2 3 Standring, Susan (2020). Gray's Anatomy: The Anatomical Basis of Clinical Practice (42th ed.). New York: Elsevier. pp. 63–64. ISBN   978-0-7020-7707-4. OCLC   1201341621.
  3. Chang, Weipang; Kanda, Hirosato; Ikeda, Ryo; Ling, Jennifer; DeBerry, Jennifer J.; Gu, Jianguo G. (13 September 2016). "Merkel disc is a serotonergic synapse in the epidermis for transmitting tactile signals in mammals". Proceedings of the National Academy of Sciences. 113 (37): E5491–E5500. Bibcode:2016PNAS..113E5491C. doi: 10.1073/pnas.1610176113 . PMC   5027443 . PMID   27573850.
  4. Kajimoto, Hiroyuki; Kawakami, Naoki; Maeda, Taro; Tachi, Susumu (1999). "Tactile Feeling Display using Functional Electrical Stimulation". Proceedings of the International Conference on Artificial Reality and Telexistence (ICAT). Tokyo, Japan: Graduate School of Engineering, The University of Tokyo.
  5. Severson KS1, Xu D1, Van de Loo M2, Bai L3, Ginty DD4, O'Connor DH5. Active Touch and Self-Motion Encoding by Merkel Cell-Associated Afferents.Neuron. 2017 May 3;94(3):666-676.e9. doi: 10.1016/j.neuron.2017.03.045.
  6. Kandel E.R., Schwartz, J.H., Jessell, T.M. (2000). Principles of Neural Science , 4th ed., p.433. McGraw-Hill, New York.
  7. Merkel FS. (1875). Tastzellen und Tastkörperchen bei den Hausthieren und beim Menschen. Archiv für mikroskopische Anatomie, 11: 636-652.