A tactile sensor is a device that measures information arising from physical interaction with its environment. Tactile sensors are generally modeled after the biological sense of cutaneous touch which is capable of detecting stimuli resulting from mechanical stimulation, temperature, and pain (although pain sensing is not common in artificial tactile sensors). Tactile sensors are used in robotics, computer hardware and security systems. A common application of tactile sensors is in touchscreen devices on mobile phones and computing.
Tactile sensors may be of different types including piezoresistive, piezoelectric, optical, capacitive and elastoresistive sensors. [3]
Tactile sensors appear in everyday life such as elevator buttons and lamps which dim or brighten by touching the base. There are also innumerable other applications for tactile sensors of which most people are never aware.
Sensors that measure very small changes must have very high sensitivities. Sensors need to be designed to have a small effect on what is measured; making the sensor smaller often improves this and may introduce other advantages. Tactile sensors can be used to test the performance of all types of applications. For example, these sensors have been used in the manufacturing of automobiles (brakes, clutches, door seals, gasket), battery lamination, bolted joints, fuel cells etc.
Tactile imaging, as a medical imaging modality, translating the sense of touch into a digital image is based on the tactile sensors. Tactile imaging closely mimics manual palpation, since the probe of the device with a pressure sensor array mounted on its face acts similar to human fingers during clinical examination, deforming soft tissue by the probe and detecting resulting changes in the pressure pattern.
Robots designed to interact with objects requiring handling involving precision, dexterity, or interaction with unusual objects, need sensory apparatus which is functionally equivalent to a human's tactile ability. Tactile sensors have been developed for use with robots. [4] [5] [ better source needed ] Tactile sensors can complement visual systems by providing added information when the robot begins to grip an object. At this time vision is no longer sufficient, as the mechanical properties of the object cannot be determined by vision alone. Determining weight, texture, stiffness, center of mass, coefficient of friction, and thermal conductivity require object interaction and some sort of tactile sensing.
Several classes of tactile sensors are used in robots of different kinds, for tasks spanning collision avoidance and manipulation.[ citation needed ] Some methods for simultaneous localization and mapping are based on tactile sensors. [6]
Pressure sensor arrays are large grids of tactels. A "tactel" is a 'tactile element'. Each tactel is capable of detecting normal forces. Tactel-based sensors provide a high resolution 'image' of the contact surface. Alongside spatial resolution and force sensitivity, systems-integration questions such as wiring and signal routing are important. [7] Pressure sensor arrays are available in thin-film form. They are primarily used as analytical tools used in the manufacturing and R&D processes by engineers and technicians, and have been adapted for use in robots. Examples of such sensors available to consumers include arrays built from conductive rubber, [8] lead zirconate titanate (PZT), polyvinylidene fluoride(PVDF), PVDF-TrFE, [9] FET, [10] and metallic capacitive sensing [11] [12] elements.
Several kinds of tactile sensors have been developed that take advantage of camera-like technology to provide high-resolution data. A key exemplar is the Gelsight technology first developed at MIT which uses a camera behind an opaque gel layer to achieve high-resolution tactile feedback. [13] [14] The Samsung ``See-through-your-skin (STS) sensor uses a semi-transparent gel to produce combined tactile and optical imaging. [15]
Strain gauges rosettes are constructed from multiple strain gauges, with each gauge detecting the force in a particular direction. When the information from each strain gauge is combined, the information allows determination of a pattern of forces or torques. [16]
A variety of biologically inspired designs have been suggested ranging from simple whisker-like sensors which measure only one point at a time [17] through more advanced fingertip-like sensors, [18] [19] [20] to complete skin-like sensors as on the latest iCub [ citation needed ]. Biologically inspired tactile sensors often incorporate more than one sensing strategy. For example, they might detect both the distribution of pressures, and the pattern of forces that would come from pressure sensor arrays and strain gauge rosettes, allowing two-point discrimination and force sensing, with human-like ability.
Advanced versions of biologically designed tactile sensors include vibration sensing which has been determined to be important for understanding interactions between the tactile sensor and objects where the sensor slides over the object. Such interactions are now understood to be important for human tool use and judging the texture of an object. [18] One such sensor combines force sensing, vibration sensing, and heat transfer sensing. [1]
Recently, a sophisticated tactile sensor has been made open-hardware, enabling enthusiasts and hobbyists to experiment with an otherwise expensive technology. [21] Furthermore, with the advent of cheap optical cameras, novel sensors have been proposed which can be built easily and cheaply with a 3D printer. [22]
A sensor is a device that produces an output signal for the purpose of detecting a physical phenomenon.
Haptic technology is technology that can create an experience of touch by applying forces, vibrations, or motions to the user. These technologies can be used to create virtual objects in a computer simulation, to control virtual objects, and to enhance remote control of machines and devices (telerobotics). Haptic devices may incorporate tactile sensors that measure forces exerted by the user on the interface. The word haptic, from the Ancient Greek: ἁπτικός (haptikos), means "tactile, pertaining to the sense of touch". Simple haptic devices are common in the form of game controllers, joysticks, and steering wheels.
A strain gauge is a device used to measure strain on an object. Invented by Edward E. Simmons and Arthur C. Ruge in 1938, the most common type of strain gauge consists of an insulating flexible backing which supports a metallic foil pattern. The gauge is attached to the object by a suitable adhesive, such as cyanoacrylate. As the object is deformed, the foil is deformed, causing its electrical resistance to change. This resistance change, usually measured using a Wheatstone bridge, is related to the strain by the quantity known as the gauge factor.
A mechanoreceptor, also called mechanoceptor, is a sensory receptor that responds to mechanical pressure or distortion. Mechanoreceptors are innervated by sensory neurons that convert mechanical pressure into electrical signals that, in animals, are sent to the central nervous system.
A touchscreen is a type of display that can detect touch input from a user. It consists of both an input device and an output device. The touch panel is typically layered on the top of the electronic visual display of a device. Touchscreens are commonly found in smartphones, tablets, laptops, and other electronic devices. The display is often an LCD, AMOLED or OLED display.
Simultaneous localization and mapping (SLAM) is the computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location within it. While this initially appears to be a chicken or the egg problem, there are several algorithms known to solve it in, at least approximately, tractable time for certain environments. Popular approximate solution methods include the particle filter, extended Kalman filter, covariance intersection, and GraphSLAM. SLAM algorithms are based on concepts in computational geometry and computer vision, and are used in robot navigation, robotic mapping and odometry for virtual reality or augmented reality.
The Pacinian corpuscle is a low-threshold mechanoreceptor responsive to vibration or pressure, found in the skin and other internal organs. In the skin it is one of the four main types of cutaneous receptors.
Sensory substitution is a change of the characteristics of one sensory modality into stimuli of another sensory modality.
A proximity sensor is a sensor able to detect the presence of nearby objects without any physical contact.
Ultrasonic transducers and ultrasonic sensors are devices that generate or sense ultrasound energy. They can be divided into three broad categories: transmitters, receivers and transceivers. Transmitters convert electrical signals into ultrasound, receivers convert ultrasound into electrical signals, and transceivers can both transmit and receive ultrasound.
Machine perception is the capability of a computer system to interpret data in a manner that is similar to the way humans use their senses to relate to the world around them. The basic method that the computers take in and respond to their environment is through the attached hardware. Until recently input was limited to a keyboard, or a mouse, but advances in technology, both in hardware and software, have allowed computers to take in sensory input in a way similar to humans.
Tactile discrimination is the ability to differentiate information through the sense of touch. The somatosensory system is the nervous system pathway that is responsible for this essential survival ability used in adaptation. There are various types of tactile discrimination. One of the most well known and most researched is two-point discrimination, the ability to differentiate between two different tactile stimuli which are relatively close together. Other types of discrimination like graphesthesia and spatial discrimination also exist but are not as extensively researched. Tactile discrimination is something that can be stronger or weaker in different people and two major conditions, chronic pain and blindness, can affect it greatly. Blindness increases tactile discrimination abilities which is extremely helpful for tasks like reading braille. In contrast, chronic pain conditions, like arthritis, decrease a person's tactile discrimination. One other major application of tactile discrimination is in new prosthetics and robotics which attempt to mimic the abilities of the human hand. In this case tactile sensors function similarly to mechanoreceptors in a human hand to differentiate tactile stimuli.
Haptic perception means literally the ability "to grasp something", and is also known as stereognosis. Perception in this case is achieved through the active exploration of surfaces and objects by a moving subject, as opposed to passive contact by a static subject during tactile perception. Haptic perception involves the cutaneous receptors of touch, and proprioceptors that sense movement and body position. The inability for haptic perception is known as astereognosis.
In electrical engineering, capacitive sensing is a technology, based on capacitive coupling, that can detect and measure anything that is conductive or has a dielectric constant different from air. Many types of sensors use capacitive sensing, including sensors to detect and measure proximity, pressure, position and displacement, force, humidity, fluid level, and acceleration. Human interface devices based on capacitive sensing, such as touchpads, can replace the computer mouse. Digital audio players, mobile phones, and tablet computers will sometimes use capacitive sensing touchscreens as input devices. Capacitive sensors can also replace mechanical buttons.
Robotics is the interdisciplinary study and practice of the design, construction, operation, and use of robots.
The somatosensory system, or somatic sensory system is a subset of the sensory nervous system. It has two subdivisions, one for the detection of mechanosensory information related to touch, and the other for the nociception detection of pain and temperature. The main functions of the somatosensory system are the perception of external stimuli, the perception of internal stimuli, and the regulation of body position and balance (proprioception).
Affective haptics is an area of research which focuses on the study and design of devices and systems that can elicit, enhance, or influence the emotional state of a human by means of sense of touch. The research field is originated with the Dzmitry Tsetserukou and Alena Neviarouskaya papers on affective haptics and real-time communication system with rich emotional and haptic channels. Driven by the motivation to enhance social interactivity and emotionally immersive experience of users of real-time messaging, virtual, augmented realities, the idea of reinforcing (intensifying) own feelings and reproducing (simulating) the emotions felt by the partner was proposed. Four basic haptic (tactile) channels governing our emotions can be distinguished:
Robotic sensing is a subarea of robotics science intended to provide sensing capabilities to robots. Robotic sensing provides robots with the ability to sense their environments and is typically used as feedback to enable robots to adjust their behavior based on sensed input. Robot sensing includes the ability to see, touch, hear and move and associated algorithms to process and make use of environmental feedback and sensory data. Robot sensing is important in applications such as vehicular automation, robotic prosthetics, and for industrial, medical, entertainment and educational robots.
Soft robotics is a subfield of robotics that concerns the design, control, and fabrication of robots composed of compliant materials, instead of rigid links. In contrast to rigid-bodied robots built from metals, ceramics and hard plastics, the compliance of soft robots can improve their safety when working in close contact with humans.
An Artificial Lateral Line (ALL) is a biomimetic lateral line system. A lateral line is a system of sensory organs in aquatic animals such as fish, that serves to detect movement, vibration, and pressure gradients in their environment. An artificial lateral line is an artificial biomimetic array of distinct mechanosensory transducers that, similarly, permits the formation of a spatial-temporal image of the sources in immediate vicinity based on hydrodynamic signatures; the purpose is to assist in obstacle avoidance and object tracking. The biomimetic lateral line system has the potential to improve navigation in underwater vehicles when vision is partially or fully compromised. Underwater navigation is challenging due to the rapid attenuation of radio frequency and Global Positioning System signals. In addition, ALL systems can overcome some of the drawbacks in traditional localization techniques like SONAR and optical imaging.
{{cite journal}}
: Cite journal requires |journal=
(help)