Rostral ventromedial medulla

Last updated
Rostral ventromedial medulla
Gray700.png
RVM is labeled 5 in red at the bottom
Details
Identifiers
Latin Nucleus ventromedialis
NeuroNames 2000
Anatomical terms of neuroanatomy

The rostral ventromedial medulla (RVM), or ventromedial nucleus of the spinal cord, [1] [2] is a group of neurons located close to the midline on the floor of the medulla oblongata. The rostral ventromedial medulla sends descending inhibitory and excitatory fibers to the dorsal horn spinal cord neurons. [3] There are 3 categories of neurons in the RVM: on-cells, off-cells, and neutral cells. They are characterized by their response to nociceptive input. Off-cells show a transitory decrease in firing rate right before a nociceptive reflex, and are theorized to be inhibitory. [3] Activation of off-cells, either by morphine or by any other means, results in antinociception. [4] On-cells show a burst of activity immediately preceding nociceptive input, and are theorized to be contributing to the excitatory drive. Neutral cells show no response to nociceptive input. [3]

Contents

The rostral ventromedial medulla is also essential in the regulation of arterial pressure. [5]

Involvement in neuropathic pain

Research has shown the RVM to be important in the maintenance of neuropathic pain. Ablation of μ-opioid-expressing neurons in the RVM with a dermorphin-saporin conjugate reduced the duration of allodynia and hyperalgesia caused by a nerve injury. Treatment with the dermorphin-saporin conjugate did not alter baseline pain thresholds, or affect sensitivity in the first 5–10 days after nerve injury. This suggests that the RVM contributes to the persistent pathology caused by nerve injury. [6]

Further research determined that a large majority of μ-opioid-expressing neurons also expressed CCK2 receptors. Microinjection in the RVM with either a CCK-saporin or a dermorphin-saporin conjugate eliminated neurons expressing either receptor. Injection of the CCK-saporin conjugate also reversed allodynia and hyperalgesia in a nerve injury model, producing the same results as the dermorphin-saporin conjugate. This destruction of neurons was relatively specific, as less than 10% of neurons in the RVM were destroyed. This suggests that the targeted neurons are the ones responsible for maintaining chronic neuropathic pain states, and that the observed effect was not due to diffuse destruction of RVM neurons. [7]

Research suggests the existence of a "morphine ensemble" in the RVM. [8] The neurons of this "ensemble" include glutamatergic RVMBDNF neurons which project to the spinal cord. These neurons connect to inhibitory neurons, called SCGal neurons, which release the neurotransmitter GABA and the neuropeptide galanin. The activation of SCGal neurons is crucial for morphine's pain-relieving effects. Additionally, the neurotrophic factor BDNF, produced within the RVMBDNF neurons, is required for morphine's action. Increasing BDNF levels enhances morphine's analgesic effects, even at lower doses. [9] [8]

In addition, lidocaine microinjections into the RVM temporarily reversed allodynia and hyperalgesia caused by nerve injury. [6]

To help determine whether the persistent pain state was centrally or peripherally mediated, non-noxious stimuli were applied to the nerve-injured limb. In animals receiving vehicle injections into the RVM, there was an increase in c-Fos expression in the superficial and deep dorsal horn of the spinal cord, indicating activation of nociceptive neurons. Animals receiving the dermorphin-saporin conjugate into the RVM had significantly less c-Fos expression. This indicates that a persistent neuropathic pain state is centrally mediated. [6]

Role of serotonin in pain modulation

Serotonin receptors have been hypothesized to play a bidirectional role in the modulation of pain. Based on previous experiments, a 5-HT3 antagonist, ondansetron, and a 5-HT7 antagonist, SB-269,970, were chosen to study. [10]

Systemic or intra-RVM injections of morphine produced dose-dependent antinociception. Spinal administration of SB-269970 reduced morphine-induced antinociception, whereas spinal administration of ondansetron had no effects. SB-269970 and ondansetron were then tested for their efficacy in reducing nociceptive responses. Allodynia and hyperalgesia were experimentally induced by administration of CCK into the RVM. Spinal administration of SB-269970 had no effect on nociception, whereas ondansetron completely reversed the effects of CCK injection. Spinal ondansetron also reversed allodynia and hyperalgesia caused by a peripheral nerve injury. Taken together, these findings indicate a role for 5-HT7 receptors in opioid-induced antinociception, and a role for 5-HT3 in pro-nociceptive facilitation. [10]

One limiting factor is that SB-269970 was also found to be a potent α2-adrenergic antagonist. Since the study using SB-269970 did not use a α2-adrenergic antagonist as a control, it is possible that some of the effects of SB-269970 are from its adrenergic effects.

Effects of Substance P and Neurokinin 1 receptors

The RVM contains high levels of both the neurokinin 1 receptor and its endogenous ligand, Substance P (SP). Microinjections of SP into the RVM resulted in transient antinociception to noxious heat stimuli but not mechanical stimuli. Pretreatment with a neurokinin 1 (NK1) antagonist prevented the antinociception induced by SP injection, but the NK1 antagonist had no effects on pain threshold by itself. To test the effects of an NK1 antagonist during injury states, an NK1 antagonist was microinjected into the RVM after application of Freund's Complete Adjuvant (CFA), a chemical used for inflammation models. Administration of the NK1 antagonist reversed the heat hyperalgesia caused by CFA. In contrast, the administration of an NK1 antagonist further increased the tactile hyperalgesia induced by CFA. However, the NK1 antagonist did prevent some tactile hyperalgesia induced by a different compound, capsaicin. In yet another induced injury model using mustard oil (a TRPA1 agonist), NK1 antagonists did not affect thermal or tactile hyperalgesia. [11]

In contrast to the study above, another group of researchers found that microinjection of SP into the RVM resulted in transient thermal hyperalgesia, which persisted long-term when continuous infusion pumps were implanted. To look more at the SP-NK1 signaling, they performed Western Blots of RVM slices, looking for NK1 receptor expression. NK1 receptor expression was increased from 2 hours to 3 days after administration of CFA. [12]

NK1 agonism induced hypersensitivity is dependent on 5-HT3 receptors, and modulated by GABAA and NMDA receptors as well. Animals were pretreated with spinally administered Y-25130 or ondansetron, both 5-HT3 antagonists, before having RVM injections of SP. Both Y-25130 and ondansetron inhibited SP-induced thermal hyperalgesia. GABAA receptor involvement was demonstrated by intrathecal administration of gabazine, a GABAA antagonist, in animals receiving continuous infusions of SP into the RVM. Gabazine treatment completely reversed the thermal hyperalgesia. The mechanism behind GABA involvement was investigated using in vitro recordings from animals treated with continuous infusions of SP or saline into the RVM. In SP-treated neurons, GABA evoked depolarization, whereas, in saline-treated neurons, it caused hyperpolarization. "These results suggest that descending facilitation induced by RVM SP administration produces GABAA receptor-evoked depolarization and an increase in excitation of dorsal horn neurons." [12] Next, the GABA A agonist muscimol was tested in conjuncture with SP. Intrathecal muscimol significantly enhanced SP-induced hypersensitivity, which was blocked by intrathecal gabazine. Next, the researchers looked at threonine phosphorylation of NKCC1 proteins, which are an isoform of the Na-K-Cl cotransporter. Phosphorylation of these proteins results in increase activity of the cotransporter. Chronic administration of RVM SP or acute SP combined with intrathecal muscimol resulted in significantly higher levels of phosphorylated NKCC1. [12]

Involvement of NMDA receptors

The role of NMDA receptors in non-inflammatory noxious stimuli was examined. The injury model consisted of two injections of acidic saline (pH = 4.0), and was designed to model non-inflammatory muscular pain. Intra-RVM administration of AP5 or MK-801, NMDA receptor antagonists, resulted in a reversal of the mechanical sensitivity induced by the acidic saline. [13]

Behavioral hyperalgesia in inflammatory pain states is closely correlated with phosphorylation of spinal NMDA receptors. To find out more about the role of NMDA receptors in RVM pain facilitation, intrathecal MK-801 was administered before a RVM SP injection. Pretreatment with MK-801 significantly reduced SP induced hyperalgesia. Intrathecal MK-801 also blocked hyperalgesia resulting from continuous SP infusions. SP also increased the phosphorylation of the NR1 subunit of NMDA receptors. [12]

In order to find out the relationship between GABA, NMDA, and SP, MK-801 was administered intrathecally to determine the effect on muscimol potentiation of SP hyperalgesia. MK-801 reduced the exaggeration of SP hyperalgesia induced by muscimol. Also, low doses of SP and intrathecal muscimol increased the expression of phosphorylated NR1 subunits of NMDA receptors. Intrathecal gabazine treatment before muscimol blocked the increase in phosphorylated NR1 expression. [12]

Purinergic involvement

On- and off-cells were both activated by local administration of ATP, a P1 and P2 agonist, whereas neutral cells were inhibited. However, on-cells and off-cells differed in their response to P2X and P2Y agonists. [14]

On-cells displayed a greater response to P2X agonists vs P2Y agonists. For example, α,β-methylene ATP, a P2X agonist, activated all on-cells, whereas 2-methylthio-ATP, a P2Y agonist, activated only 60% of on-cells tested. All on-cells showed a response to the non-specific P2 agonist uridine triphosphate (UTP). Activation of on cells by ATP was reversed by using the P2 antagonists suramin and pyridoxal-phosphate-6-azophenyl-2′,4′disulphonic acid (PPADS), but not with the P2Y antagonist MRS2179. [14]

In contrast, off-cells were more responsive to P2Y agonists. 2-Methylthio-ATP activated all off-cells, whereas α,β-methylene ATP, a P2X agonist, activated only one-third of off-cells. Off-cells were also activated by UTP, but lacked any response to adenosine, a P1 agonist. Activation of off-cells by ATP was inhibited by suramin, PPADS, and MRS2179. [14]

Neutral cells are inhibited by adenosine, a P1 agonist, whereas on-cells and off-cells lack a response to adenosine. [14]

Histological staining by another research group examined the distribution of purinergic receptor subtypes throughout the RVM. P1, P2X1, and P2X3 all showed moderate labeling density, with slightly greater densities observed in the nucleus raphes magnus and the raphe pallidus. In contrast, P2Y1 showed lower levels of labeling. P1 and P2Y1 were shown to be co-localized, as well as P2X1 and P2Y1. Presence of the raphe nuclei in the RVM also led to staining for tryptophan hydroxylase (TPH), a marker for serotonin (5-HT) positive neurons, and looking for co-localization of 5-HT neurons with purinergic receptors. Only about 10% of RVM neurons were TPH positive, but, of those labeled for TPH, a large majority were co-labeled with purinergic antibodies. Fifty-five percent of TPH+ neurons stained for P1, 63% for P2X1, 64% for P2X3, and 70% P2Y1. [15]

Related Research Articles

<span class="mw-page-title-main">Substance P</span> Chemical compound (polypeptide neurotransmitter)

Substance P (SP) is an undecapeptide and a type of neuropeptide, belonging to the tachykinin family of neuropeptides. It acts as a neurotransmitter and a neuromodulator. Substance P and the closely related neurokinin A (NKA) are produced from a polyprotein precursor after alternative splicing of the preprotachykinin A gene. The deduced amino acid sequence of substance P is as follows:

Dynorphins (Dyn) are a class of opioid peptides that arise from the precursor protein prodynorphin. When prodynorphin is cleaved during processing by proprotein convertase 2 (PC2), multiple active peptides are released: dynorphin A, dynorphin B, and α/β-neoendorphin. Depolarization of a neuron containing prodynorphin stimulates PC2 processing, which occurs within synaptic vesicles in the presynaptic terminal. Occasionally, prodynorphin is not fully processed, leading to the release of "big dynorphin". "Big dynorphin" is a 32-amino acid molecule consisting of both dynorphin A and dynorphin B.

<span class="mw-page-title-main">Opioid receptor</span> Group of biological receptors

Opioid receptors are a group of inhibitory G protein-coupled receptors with opioids as ligands. The endogenous opioids are dynorphins, enkephalins, endorphins, endomorphins and nociceptin. The opioid receptors are ~40% identical to somatostatin receptors (SSTRs). Opioid receptors are distributed widely in the brain, in the spinal cord, on peripheral neurons, and digestive tract.

<span class="mw-page-title-main">Hyperalgesia</span> Abnormally increased sensitivity to pain

Hyperalgesia is an abnormally increased sensitivity to pain, which may be caused by damage to nociceptors or peripheral nerves and can cause hypersensitivity to stimulus. Prostaglandins E and F are largely responsible for sensitizing the nociceptors. Temporary increased sensitivity to pain also occurs as part of sickness behavior, the evolved response to infection.

<span class="mw-page-title-main">Dorsal root ganglion</span> Cluster of neurons in a dorsal root of a spinal nerve

A dorsal root ganglion is a cluster of neurons in a dorsal root of a spinal nerve. The cell bodies of sensory neurons known as first-order neurons are located in the dorsal root ganglia.

<span class="mw-page-title-main">Allodynia</span> Feeling of pain from stimuli which do not normally elicit pain

Allodynia is a condition in which pain is caused by a stimulus that does not normally elicit pain. For example, sunburn can cause temporary allodynia, so that usually painless stimuli, such as wearing clothing or running cold or warm water over it, can be very painful. It is different from hyperalgesia, an exaggerated response from a normally painful stimulus. The term comes from Ancient Greek άλλος (állos) 'other' and οδύνη (odúnē) 'pain'.

<span class="mw-page-title-main">Lateral hypothalamus</span>

The lateral hypothalamus (LH), also called the lateral hypothalamic area (LHA), contains the primary orexinergic nucleus within the hypothalamus that widely projects throughout the nervous system; this system of neurons mediates an array of cognitive and physical processes, such as promoting feeding behavior and arousal, reducing pain perception, and regulating body temperature, digestive functions, and blood pressure, among many others. Clinically significant disorders that involve dysfunctions of the orexinergic projection system include narcolepsy, motility disorders or functional gastrointestinal disorders involving visceral hypersensitivity, and eating disorders.

Opioid-induced hyperalgesia (OIH) or opioid-induced abnormal pain sensitivity, also called paradoxical hyperalgesia, is an uncommon condition of generalized pain caused by the long-term use of high dosages of opioids such as morphine, oxycodone, and methadone. OIH is not necessarily confined to the original affected site. This means that if the person was originally taking opioids due to lower back pain, when OIH appears, the person may experience pain in the entire body, instead of just in the lower back. Over time, individuals taking opioids can also develop an increasing sensitivity to noxious stimuli, even evolving a painful response to previously non-noxious stimuli (allodynia). This means that if the person originally felt pain from twisting or from sitting too long, the person might now additionally experience pain from a light touch or from raindrops falling on the skin.

<span class="mw-page-title-main">NMDA receptor antagonist</span> Class of anesthetics

NMDA receptor antagonists are a class of drugs that work to antagonize, or inhibit the action of, the N-Methyl-D-aspartate receptor (NMDAR). They are commonly used as anesthetics for humans and animals; the state of anesthesia they induce is referred to as dissociative anesthesia.

<span class="mw-page-title-main">TRPV1</span> Human protein for regulating body temperature

The transient receptor potential cation channel subfamily V member 1 (TRPV1), also known as the capsaicin receptor and the vanilloid receptor 1, is a protein that, in humans, is encoded by the TRPV1 gene. It was the first isolated member of the transient receptor potential vanilloid receptor proteins that in turn are a sub-family of the transient receptor potential protein group. This protein is a member of the TRPV group of transient receptor potential family of ion channels. Fatty acid metabolites with affinity for this receptor are produced by cyanobacteria, which diverged from eukaryotes at least 2000 million years ago (MYA). The function of TRPV1 is detection and regulation of body temperature. In addition, TRPV1 provides a sensation of scalding heat and pain (nociception). In primary afferent sensory neurons, it cooperates with TRPA1 to mediate the detection of noxious environmental stimuli.

The ventrobasal complex (VB) is a relay nucleus of the thalamus for nociceptive stimuli received from nociceptive nerves. The VB consists of the ventral posteromedial nucleus (VPM) and the ventral posterolateral nucleus (VPL). In some species, the ventral posterolateral nucleus, pars caudalis is also a part of the VB. The VB gets inputs from the spinothalamic tract, medial lemniscus, and corticothalamic tract. The main output of the VB is the primary somatosensory cortex.

Neuromedin U is a neuropeptide found in the brain of humans and other mammals, which has a number of diverse functions including contraction of smooth muscle, regulation of blood pressure, pain perception, appetite, bone growth, and hormone release. It was first isolated from the spinal cord in 1985, and named after its ability to cause smooth muscle contraction in the uterus.

<span class="mw-page-title-main">TRPA1</span> Protein and coding gene in humans

Transient receptor potential cation channel, subfamily A, member 1, also known as transient receptor potential ankyrin 1, TRPA1, or The Wasabi Receptor, is a protein that in humans is encoded by the TRPA1 gene.

<span class="mw-page-title-main">Tezampanel</span> Chemical compound

Tezampanel is a drug originally developed by Eli Lilly which acts as a competitive antagonist of the AMPA and kainate subtypes of the ionotropic glutamate receptor family, with selectivity for the GluR5 subtype of the kainate receptor. It has neuroprotective and anticonvulsant properties, the former of which may, at least in part, occur via blockade of calcium uptake into neurons.

<span class="mw-page-title-main">Oxymorphazone</span> Opioid analgesic

Oxymorphazone is an opioid analgesic drug related to oxymorphone. Oxymorphazone is a potent and long acting μ-opioid agonist which binds irreversibly to the receptor, forming a covalent bond which prevents it from detaching once bound. This gives it an unusual pharmacological profile, and while oxymorphazone is only around half the potency of oxymorphone, with higher doses the analgesic effect becomes extremely long lasting, with a duration of up to 48 hours. However, tolerance to analgesia develops rapidly with repeated doses, as chronically activated opioid receptors are rapidly internalised by β-arrestins, similar to the results of non-covalent binding by repeated doses of agonists with extremely high binding affinity such as lofentanil.

<span class="mw-page-title-main">Clinical neurochemistry</span>

Clinical neurochemistry is the field of neurological biochemistry which relates biochemical phenomena to clinical symptomatic manifestations in humans. While neurochemistry is mostly associated with the effects of neurotransmitters and similarly functioning chemicals on neurons themselves, clinical neurochemistry relates these phenomena to system-wide symptoms. Clinical neurochemistry is related to neurogenesis, neuromodulation, neuroplasticity, neuroendocrinology, and neuroimmunology in the context of associating neurological findings at both lower and higher level organismal functions.

<span class="mw-page-title-main">(+)-Naloxone</span> Drug

(+)-Naloxone (dextro-naloxone) is a drug which is the opposite enantiomer of the opioid antagonist drug (−)-naloxone. Unlike (−)-naloxone, (+)-naloxone has no significant affinity for opioid receptors, but instead has been discovered to act as a selective antagonist of Toll-like receptor 4. This receptor is involved in immune system responses, and activation of TLR4 induces glial activation and release of inflammatory mediators such as TNF-α and Interleukin-1.

<span class="mw-page-title-main">Min Zhuo</span> Canadian neuroscientist

Min Zhuo is a pain neuroscientist at the University of Toronto in Canada. He is the Michael Smith Chair in Neuroscience and Mental Health as well as the Canada Research Chair in Pain and Cognition and a Fellow of the Royal Society of Canada. Zhou was hosted in 2017-2018 as a guest professor at the pharmacology institute at Heidelberg University, Heidelberg.

<span class="mw-page-title-main">Willardiine</span> Chemical compound

Willardiine (correctly spelled with two successive i's) or (S)-1-(2-amino-2-carboxyethyl)pyrimidine-2,4-dione is a chemical compound that occurs naturally in the seeds of Mariosousa willardiana and Acacia sensu lato. The seedlings of these plants contain enzymes capable of complex chemical substitutions that result in the formation of free amino acids (See:#Synthesis). Willardiine is frequently studied for its function in higher level plants. Additionally, many derivates of willardiine are researched for their potential in pharmaceutical development. Willardiine was first discovered in 1959 by R. Gmelin, when he isolated several free, non-protein amino acids from Acacia willardiana (another name for Mariosousa willardiana) when he was studying how these families of plants synthesize uracilyalanines. A related compound, Isowillardiine, was concurrently isolated by a different group, and it was discovered that the two compounds had different structural and functional properties. Subsequent research on willardiine has focused on the functional significance of different substitutions at the nitrogen group and the development of analogs of willardiine with different pharmacokinetic properties. In general, Willardiine is the one of the first compounds studied in which slight changes to molecular structure result in compounds with significantly different pharmacokinetic properties.

Epigenetics of chronic pain is the study of how epigenetic modifications of genes affect the development and maintenance of chronic pain. Chromatin modifications have been found to affect neural function, such as synaptic plasticity and memory formation, which are important mechanisms of chronic pain. In 2019, 20% of adults dealt with chronic pain. Epigenetics can provide a new perspective on the biological mechanisms and potential treatments of chronic pain.

References

  1. Noback CR, Harting JK (1971). "Cytoarchitectural Organization of the Gray Matter of the Spinal Cord". Spinal Cord (Spinal Medulla): Primatologia. Karger Medical and Scientific Publishers. p. 2/14. ISBN   3805512058 . Retrieved 11 August 2015.
  2. ancil-2000 at NeuroNames
  3. 1 2 3 Urban, M.O. (July 1999). "Supraspinal contributions to hyperalgesia". PNAS. 96 (14): 7687–7692. Bibcode:1999PNAS...96.7687U. doi: 10.1073/pnas.96.14.7687 . PMC   33602 . PMID   10393881.
  4. Morgan, Michael (November 2008). "Periaqueductal Gray neurons project to spinally projecting GABAergic neurons in the rostral ventromedial medulla". Pain. 140 (2): 376–386. doi:10.1016/j.pain.2008.09.009. PMC   2704017 . PMID   18926635.
  5. Madden, CJ; Sved, AF (October 2003). "Rostral ventrolateral medulla C1 neurons and cardiovascular regulation". Cellular and molecular neurobiology. 23 (4–5): 739–49. doi:10.1023/a:1025000919468. PMID   14514028.
  6. 1 2 3 Vera-Portocarrero, LP; Zhang, ET; Ossipov, MH; et al. (July 2006). "Descending facilitation from the rostral ventromedial medulla maintains nerve injury-induced central sensitization". Neuroscience. 140 (4): 1311–20. doi:10.1016/j.neuroscience.2006.03.016. PMID   16650614. S2CID   42002789.
  7. Zhang, Wenjun (March 2009). "Neuropathic pain is maintained by brainstem neurons co-expressing opioid and cholecystokinin receptors". Brain. 132 (3): 778–787. doi:10.1093/brain/awn330. PMC   2724921 . PMID   19050032.
  8. 1 2 Fatt, Michael P.; Zhang, Ming-Dong; Kupari, Jussi; Altınkök, Müge; Yang, Yunting; Hu, Yizhou; Svenningsson, Per; Ernfors, Patrik (2024-08-30). "Morphine-responsive neurons that regulate mechanical antinociception". Science. 385 (6712). doi:10.1126/science.ado6593. ISSN   0036-8075.
  9. De Preter, Caitlynn C.; Heinricher, Mary M. (2024-08-30). "Opioid circuit opens path to pain relief". Science. 385 (6712): 932–933. doi:10.1126/science.adr5900. ISSN   0036-8075.
  10. 1 2 Dogrul, Ahmet (July 2009). "Differential mediation of descending pain facilitation and inhibition by spinal 5HT-3 and 5HT-7 receptors". Brain Research. 1280: 52–59. doi:10.1016/j.brainres.2009.05.001. PMID   19427839. S2CID   24631834.
  11. Hamity, Marta V. (February 2010). "Effects of Neurokinin-1 Receptor Agonism and Antagonism in the Rostral Ventromedial Medulla of Rats with Acute or Persistent Inflammatory Nociception". Neuroscience. 165 (3): 902–913. doi:10.1016/j.neuroscience.2009.10.064. PMC   2815160 . PMID   19892001.
  12. 1 2 3 4 5 Lagraize, S.C. (December 2010). "Spinal cord mechanisms mediating behavioral hyperalgesia induced by neurokinin-1 tachykinin receptor activation in the rostral ventromedial medulla". Neuroscience. 171 (4): 1341–1356. doi:10.1016/j.neuroscience.2010.09.040. PMC   3006078 . PMID   20888891.
  13. Silva, LFS (April 2010). "Activation of NMDA receptors in the brainstem, rostral ventromedial medulla, and nucleus reticularis gigantocellularis mediates mechanical hyperalgesia produced by repeated intramuscular injections of acidic saline in rats". J Pain. 11 (4): 378–87. doi:10.1016/j.jpain.2009.08.006. PMC   2933661 . PMID   19853525.
  14. 1 2 3 4 Selden, N.R. (June 2007). "Purinergic actions on neurons that modulate nociception in the rostral ventromedial medulla". Neuroscience. 146 (4): 1808–1816. doi:10.1016/j.neuroscience.2007.03.044. PMID   17481825. S2CID   207242546.
  15. Close, L.N. (January 2009). "Purinergic Receptor Immunoreactivity in the Rostral Ventromedial Medulla". Neuroscience. 158 (2): 915–921. doi:10.1016/j.neuroscience.2008.08.044. PMC   2664706 . PMID   18805466.