Mammillary body

Last updated
Mammillary body
Gray1180 Corpus Mamillare highlighted.png
Sagittal section, "corpus mamillare" highlighted. [1]
Gray718.png
Coronal section of brain through intermediate mass of third ventricle. (Label "corpora mamillaria" at bottom.)
Details
Part of Diencephalon
System Limbic
Parts medial mammillary nucleus
lateral mammillary nucleus
Identifiers
Latin corpus mamillare
(plural: corpora mamillaria)
Acronym(s)mmb
MeSH D008326
NeuroNames 412
NeuroLex ID birnlex_865
TA98 A14.1.08.402
TA2 5674
FMA 74877
Anatomical terms of neuroanatomy

The mammillary bodies are a pair of small round bodies, located on the undersurface of the brain that, as part of the diencephalon, form part of the limbic system. They are located at the ends of the anterior arches of the fornix. [2] They consist of two groups of nuclei, the medial mammillary nuclei and the lateral mammillary nuclei. [3]

Contents

Neuroanatomists have often categorized the mammillary bodies as part of the posterior part of hypothalamus. [4]

Structure

Connections

They are connected to other parts of the brain (as shown in the schematic, below left), and act as a relay for impulses coming from the amygdalae and hippocampi, via the mamillo-thalamic tract to the thalamus.

Function

Mammillary bodies, and their projections to the anterior thalamus via the mammillothalamic tract, are important for recollective memory. [5] The damage of medial mammillary nucleus leads to spatial memory deficit, according to observations in rats with mammillary body lesions. [5]

Clinical significance

Damage to the mammillary bodies due to thiamine deficiency is implied in pathogenesis of Wernicke–Korsakoff syndrome. Symptoms include impaired memory, also called anterograde amnesia, suggesting that the mammillary bodies may be important for memory. Lesions of the medial dorsal and anterior nuclei of the thalami and lesions of the mammillary bodies are commonly involved in amnesic syndromes in humans. [6]

Mammillary body atrophy is present in several other conditions, such as colloid cysts in the third ventricle, Alzheimer's disease, schizophrenia, heart failure, and sleep apnea. In spite of this the exact function of the mammillary bodies is still not clear. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Hypothalamus</span> Area of the brain below the thalamus

The hypothalamus is a small part of the brain that contains a number of nuclei with a variety of functions. One of the most important functions is to link the nervous system to the endocrine system via the pituitary gland. The hypothalamus is located below the thalamus and is part of the limbic system. It forms the ventral part of the diencephalon. All vertebrate brains contain a hypothalamus. In humans, it is the size of an almond.

<span class="mw-page-title-main">Thalamus</span> Structure within the brain

The thalamus is a large mass of gray matter on the lateral walls of the third ventricle forming the dorsal part of the diencephalon. Nerve fibers project out of the thalamus to the cerebral cortex in all directions, known as the thalamocortical radiations, allowing hub-like exchanges of information. It has several functions, such as the relaying of sensory and motor signals to the cerebral cortex and the regulation of consciousness, sleep, and alertness.

<span class="mw-page-title-main">Limbic system</span> Set of brain structures involved in emotion and motivation

The limbic system, also known as the paleomammalian cortex, is a set of brain structures located on both sides of the thalamus, immediately beneath the medial temporal lobe of the cerebrum primarily in the forebrain.

<span class="mw-page-title-main">Korsakoff syndrome</span> Mental illness caused by a lack of thiamine in the brain

Korsakoff syndrome (KS) is a disorder of the central nervous system characterized by amnesia, deficits in explicit memory, and confabulation. This neurological disorder is caused by a deficiency of thiamine (vitamin B1) in the brain, and it is typically associated with and exacerbated by the prolonged, excessive ingestion of alcohol. Korsakoff syndrome is often accompanied by Wernicke encephalopathy; this combination is called Wernicke–Korsakoff syndrome.

<span class="mw-page-title-main">Fornix (neuroanatomy)</span> Bundle of nerve fibers in the brain

The fornix is a C-shaped bundle of nerve fibers in the brain that acts as the major output tract of the hippocampus. The fornix also carries some afferent fibers to the hippocampus from structures in the diencephalon and basal forebrain. The fornix is part of the limbic system. While its exact function and importance in the physiology of the brain are still not entirely clear, it has been demonstrated in humans that surgical transection—the cutting of the fornix along its body—can cause memory loss. There is some debate over what type of memory is affected by this damage, but it has been found to most closely correlate with recall memory rather than recognition memory. This means that damage to the fornix can cause difficulty in recalling long-term information such as details of past events, but it has little effect on the ability to recognize objects or familiar situations.

<span class="mw-page-title-main">Spinothalamic tract</span> Sensory pathway from the skin to the thalamus

The spinothalamic tract is a part of the anterolateral system or the ventrolateral system, a sensory pathway to the thalamus. From the ventral posterolateral nucleus in the thalamus, sensory information is relayed upward to the somatosensory cortex of the postcentral gyrus.

<span class="mw-page-title-main">Pulvinar nuclei</span>

The pulvinar nuclei or nuclei of the pulvinar are the nuclei located in the thalamus. As a group they make up the collection called the pulvinar of the thalamus, usually just called the pulvinar.

<span class="mw-page-title-main">Reticular formation</span> Spinal trigeminal nucleus

The reticular formation is a set of interconnected nuclei that are located in the brainstem, hypothalamus, and other regions. It is not anatomically well defined, because it includes neurons located in different parts of the brain. The neurons of the reticular formation make up a complex set of networks in the core of the brainstem that extend from the upper part of the midbrain to the lower part of the medulla oblongata. The reticular formation includes ascending pathways to the cortex in the ascending reticular activating system (ARAS) and descending pathways to the spinal cord via the reticulospinal tracts.

<span class="mw-page-title-main">Papez circuit</span> Neural circuit

The Papez circuit, or medial limbic circuit, is a neural circuit for the control of emotional expression. In 1937, James Papez proposed that the circuit connecting the hypothalamus to the limbic lobe was the basis for emotional experiences. Paul D. MacLean reconceptualized Papez's proposal and coined the term limbic system. MacLean redefined the circuit as the "visceral brain" which consisted of the limbic lobe and its major connections in the forebrain – hypothalamus, amygdala, and septum. Over time, the concept of a forebrain circuit for the control of emotional expression has been modified to include the prefrontal cortex.

The amygdalofugal pathway is one of the three major efferent pathways of the amygdala, meaning that it is one of the three principal pathways by which fibers leave the amygdala. It leads from the basolateral nucleus and central nucleus of the amygdala. The amygdala is a limbic structure in the medial temporal lobe of the brain. The other main efferent pathways from the amygdala are the stria terminalis and anterior commissure.

The mammillothalamic tract is an efferent pathway of the mammillary body which projects to the anterior nuclei of thalamus. It consists of heavily myelinated fibres. It is part of a brain circuit involved in spatial memory.

<span class="mw-page-title-main">Medial dorsal nucleus</span>

The medial dorsal nucleus is a large nucleus in the thalamus.

The isothalamus is a division used by some researchers in describing the thalamus.

<span class="mw-page-title-main">Anterior nuclei of thalamus</span>

The anterior nuclei of thalamus are a collection of nuclei at the rostral end of the dorsal thalamus. They comprise the anteromedial, anterodorsal, and anteroventral nuclei.

The trisynaptic circuit or trisynaptic loop is a relay of synaptic transmission in the hippocampus. The circuit was initially described by the neuroanatomist Santiago Ramon y Cajal, in the early twentieth century, using the Golgi staining method. After the discovery of the trisynaptic circuit, a series of research has been conducted to determine the mechanisms driving this circuit. Today, research is focused on how this loop interacts with other parts of the brain, and how it influences human physiology and behaviour. For example, it has been shown that disruptions within the trisynaptic circuit lead to behavioural changes in rodent and feline models.

<span class="mw-page-title-main">Inferior pulvinar nucleus</span>

Inferior pulvinar nucleus is one of four traditionally anatomically distinguished nuclei of the pulvinar of the thalamus. The other three nuclei of the pulvinar are called lateral, anterior and medial pulvinar nuclei.

<span class="mw-page-title-main">Lateral pulvinar nucleus</span>

Lateral pulvinar nucleus is one of four traditionally anatomically distinguished nuclei of the pulvinar of the thalamus. The other three nuclei of the pulvinar are called anterior, inferior and medial pulvinar nuclei.

The dorsal tegmental nucleus (DTN), also known as dorsal tegmental nucleus of Gudden (DTg), is a group of neurons located in the brain stem, which are involved in spatial navigation and orientation.

Patient N.A. was (is?) an American man, who developed anterograde amnesia as a result of an accident. He was a patient studied by Larry Squire - a professor of psychiatry, neuroscience and psychology at the University of California. The cause of his amnesia was found to be a thalamic lesion extending to the hypothalamus. Damage to the temporal cortex was also found and thought to be a result of an exploratory surgery.

References

  1. Henry Gray (1918). Anatomy of the Human Body.
  2. "Mammillary Bodies". Springer Reference. Retrieved 2013-06-03.
  3. Vann SD, Aggleton JP (January 2004). "The mammillary bodies: two memory systems in one?" (PDF). Nature Reviews. Neuroscience. 5 (1): 35–44. doi:10.1038/nrn1299. PMID   14708002. S2CID   15027244.[ permanent dead link ].
  4. M.B. Carpenter and J. Sutin: Human Neuroanatomy (8th edition) 1983
  5. 1 2 3 Vann SD (July 2010). "Re-evaluating the role of the mammillary bodies in memory". Neuropsychologia. 48 (8): 2316–27. CiteSeerX   10.1.1.372.1373 . doi:10.1016/j.neuropsychologia.2009.10.019. PMID   19879886. S2CID   2424758.
  6. Duprez TP, Serieh BA, Raftopoulos C (January 2005). "Absence of memory dysfunction after bilateral mammillary body and mammillothalamic tract electrode implantation: preliminary experience in three patients". AJNR. American Journal of Neuroradiology. 26 (1): 195–7, author reply 197–8. PMC   7975039 . PMID   15661728.