Epithalamus

Last updated
Epithalamus
Epithalamus.png
Aspect of a brain sectioned in the median sagittal plane. Epithalamus labeled in red, by "habenular commissure", "pineal body", and "posterior commissure", with its projection anteriorly consisting stria medullaris
Details
Part ofPosterior segment of the diencephalon. [1] The epithalamus includes the habenular nuclei, the stria medullaris, the anterior and posterior paraventricular nuclei, the posterior commissure, and the pineal gland. [2]
Identifiers
Latin epithalamus
MeSH D019261
NeuroNames 292
NeuroLex ID birnlex_1710
TA98 A14.1.08.002
A14.1.08.501
TA2 5675
FMA 62009
Anatomical terms of neuroanatomy

The epithalamus (pl.: epithalami) is a posterior (dorsal) segment of the diencephalon. [3] The epithalamus includes the habenular nuclei, the stria medullaris, the anterior and posterior paraventricular nuclei, the posterior commissure, and the pineal gland. [2]

Contents

Functions

The function of the epithalamus is to connect the limbic system to other parts of the brain. The epithalamus also serves as a connecting point for the dorsal diencephalic conduction system, which is responsible for carrying information from the limbic forebrain to limbic midbrain structures. [4] [5] Some functions of its components include the secretion of melatonin from the pineal gland (circadian rhythms), regulation of motor pathways and emotions, and how energy is conserved in the body.[ citation needed ]

A study has shown that the lateral habenula, in the epithalamus, produces spontaneous theta oscillatory activity that was correlated with theta oscillation in the hippocampus. The same study also found that the increase in theta waves in both lateral habenula and hippocampus was correlated with increased memory performance in rats. This suggests that the lateral habenula has an interaction with the hippocampus that is involved in hippocampus-dependent spatial information processing. [6]

Components

The epithalamus is a tiny structure that comprises the habenular trigone, the pineal gland, and the habenular commissure. It is wired with the limbic system and basal ganglia.

Species that possess a photoreceptive parapineal organ show asymmetry in the epithalamus at the habenula, to the left (dorsal). [7]

Clinical significance

Dysfunction of the epithalamus can be related to mood disorders such as major depression, schizophrenia, and sleeping disorders. [4] Low levels of melatonin will typically give rise to mood disorders. [8]

Calcification of the epithalamus can be linked to periventricular lesions near the limbic system, and lesions of cortico-subcortical pathways that are involved with schizophrenia. [4]

Sleep disorders

The epithalamus is associated with sleep disorders like insomnia revolving around circadian rhythms of sleep wake cycles. The close connection of the epithalamus with the limbic system regulates the secretion of melatonin by the pineal gland and the regulation of motor pathways and emotions. [9] The secretion of melatonin happens in a cycle. Secretion is high at night or in the absence of light and low during the day. The suprachiasmatic nucleus in the hypothalamus is responsible for this cycle of secretion from the epithalamus, specifically from the pineal gland. [8] The Circadian timekeeping is driven in cells by the cyclical activity of core clock genes and proteins such as per2/PER2. [9] Gamma-aminobutyric acid and several peptide factors, including cytokines, growth hormone-releasing hormone and prolactin, are related to sleep promotion. [10]

Related Research Articles

<span class="mw-page-title-main">Hypothalamus</span> Area of the brain below the thalamus

The hypothalamus is a small part of the brain that contains a number of nuclei with a variety of functions. One of the most important functions is to link the nervous system to the endocrine system via the pituitary gland. The hypothalamus is located below the thalamus and is part of the limbic system. It forms the ventral part of the diencephalon. All vertebrate brains contain a hypothalamus. In humans, it is the size of an almond.

<span class="mw-page-title-main">Thalamus</span> Structure within the brain

The thalamus is a large mass of gray matter on the lateral walls of the third ventricle forming the dorsal part of the diencephalon. Nerve fibers project out of the thalamus to the cerebral cortex in all directions, known as the thalamocortical radiations, allowing hub-like exchanges of information. It has several functions, such as the relaying of sensory and motor signals to the cerebral cortex and the regulation of consciousness, sleep, and alertness.

<span class="mw-page-title-main">Pineal gland</span> Endocrine gland in the brain of most vertebrates

The pineal gland is a small endocrine gland in the brain of most vertebrates. In the darkness the pineal gland produces melatonin, a serotonin-derived hormone, which modulates sleep patterns following the diurnal cycles. The shape of the gland resembles a pine cone, which gives it its name. The pineal gland is located in the epithalamus, near the center of the brain, between the two hemispheres, tucked in a groove where the two halves of the thalamus join. It is one of the neuroendocrine secretory circumventricular organs in which capillaries are mostly permeable to solutes in the blood.

<span class="mw-page-title-main">Melatonin</span> Hormone released by the pineal gland

Melatonin, an indoleamine, is a natural compound produced by various organisms, including bacteria and eukaryotes. Its discovery in 1958 by Aaron B. Lerner and colleagues stemmed from the isolation of a substance from the pineal gland of cows that could induce skin lightening in common frogs. This compound was later identified as a hormone secreted in the brain during the night, playing a crucial role in regulating the sleep-wake cycle, also known as the circadian rhythm, in vertebrates.

<span class="mw-page-title-main">Anterior pituitary</span> Anterior lobe of the pituitary gland

A major organ of the endocrine system, the anterior pituitary is the glandular, anterior lobe that together with the posterior lobe makes up the pituitary gland (hypophysis) which, in humans, is located at the base of the brain, protruding off the bottom of the hypothalamus.

<span class="mw-page-title-main">Third ventricle</span> Ventricle of the brain located between the two thalami

The third ventricle is one of the four connected ventricles of the ventricular system within the mammalian brain. It is a slit-like cavity formed in the diencephalon between the two thalami, in the midline between the right and left lateral ventricles, and is filled with cerebrospinal fluid (CSF).

<span class="mw-page-title-main">Fornix (neuroanatomy)</span> Bundle of nerve fibers in the brain

The fornix is a C-shaped bundle of nerve fibers in the brain that acts as the major output tract of the hippocampus. The fornix also carries some afferent fibers to the hippocampus from structures in the diencephalon and basal forebrain. The fornix is part of the limbic system. While its exact function and importance in the physiology of the brain are still not entirely clear, it has been demonstrated in humans that surgical transection—the cutting of the fornix along its body—can cause memory loss. There is some debate over what type of memory is affected by this damage, but it has been found to most closely correlate with recall memory rather than recognition memory. This means that damage to the fornix can cause difficulty in recalling long-term information such as details of past events, but it has little effect on the ability to recognize objects or familiar situations.

<span class="mw-page-title-main">Neural pathway</span> Connection formed between neurons that allows neurotransmission

In neuroanatomy, a neural pathway is the connection formed by axons that project from neurons to make synapses onto neurons in another location, to enable neurotransmission. Neurons are connected by a single axon, or by a bundle of axons known as a nerve tract, or fasciculus. Shorter neural pathways are found within grey matter in the brain, whereas longer projections, made up of myelinated axons, constitute white matter.

<span class="mw-page-title-main">Suprachiasmatic nucleus</span> Part of the brains hypothalamus

The suprachiasmatic nucleus or nuclei (SCN) is a small region of the brain in the hypothalamus, situated directly above the optic chiasm. It is the principal circadian pacemaker in mammals, responsible for generating circadian rhythms. Reception of light inputs from photosensitive retinal ganglion cells allow it to coordinate the subordinate cellular clocks of the body and entrain to the environment. The neuronal and hormonal activities it generates regulate many different body functions in an approximately 24-hour cycle.

<span class="mw-page-title-main">Diencephalon</span> Division of the forebrain around the third ventricle

In the human brain, the diencephalon is a division of the forebrain. It is situated between the telencephalon and the midbrain. The diencephalon has also been known as the tweenbrain in older literature. It consists of structures that are on either side of the third ventricle, including the thalamus, the hypothalamus, the epithalamus and the subthalamus.

<span class="mw-page-title-main">Habenula</span> Small bilateral neuronal structure in the brain of vertebrates

The habenula is a small bilateral neuronal structure in the brain of vertebrates, that has also been called a microstructure since it is no bigger than a pea. The naming as little rein describes its elongated shape in the epithalamus, where it borders the third ventricle, and lies in front of the pineal gland.

<span class="mw-page-title-main">Septal area</span> Area in the lower, posterior part of the medial surface of the frontal lobe

The septal area, consisting of the lateral septum and medial septum, is an area in the lower, posterior part of the medial surface of the frontal lobe, and refers to the nearby septum pellucidum.

<span class="mw-page-title-main">Circumventricular organs</span> Interfaces between the brain and the circulatory system

Circumventricular organs (CVOs) are structures in the brain characterized by their extensive and highly permeable capillaries, unlike those in the rest of the brain where there exists a blood–brain barrier (BBB) at the capillary level. Although the term "circumventricular organs" was originally proposed in 1958 by Austrian anatomist Helmut O. Hofer concerning structures around the brain ventricular system, the penetration of blood-borne dyes into small specific CVO regions was discovered in the early 20th century. The permeable CVOs enabling rapid neurohumoral exchange include the subfornical organ (SFO), the area postrema (AP), the vascular organ of lamina terminalis, the median eminence, the pituitary neural lobe, and the pineal gland.

<span class="mw-page-title-main">Superior cervical ganglion</span> Largest of the cervical ganglia

The superior cervical ganglion (SCG) is the upper-most and largest of the cervical sympathetic ganglia of the sympathetic trunk. It probably formed by the union of four sympathetic ganglia of the cervical spinal nerves C1–C4. It is the only ganglion of the sympathetic nervous system that innervates the head and neck. The SCG innervates numerous structures of the head and neck.

<span class="mw-page-title-main">Stria medullaris of thalamus</span>

The stria medullaris (SM), is a part of the epithalamus and forms a bilateral white matter tract of the initial segment of the dorsal diencephalic conduction system (DDCS). It contains afferent fibers from the septal nuclei, lateral preoptico-hypothalamic region, and anterior thalamic nuclei to the habenula. It forms a horizontal ridge on the medial surface of the thalamus on the border between dorsal and medial surfaces of thalamus. The SM, in conjunction with the habenula and the habenular commissure, forms the habenular trigone. It is considered to be the primary afferent of the DDCS.

The trisynaptic circuit or trisynaptic loop is a relay of synaptic transmission in the hippocampus. The circuit was initially described by the neuroanatomist Santiago Ramon y Cajal, in the early twentieth century, using the Golgi staining method. After the discovery of the trisynaptic circuit, a series of research has been conducted to determine the mechanisms driving this circuit. Today, research is focused on how this loop interacts with other parts of the brain, and how it influences human physiology and behaviour. For example, it has been shown that disruptions within the trisynaptic circuit lead to behavioural changes in rodent and feline models.

<span class="mw-page-title-main">Habenular commissure</span>

The habenular commissure is a nerve tract of commissural fibers that connects the habenular nuclei on both sides of the habenular trigone in the epithalamus.

A chronobiotic is an agent that can cause phase adjustment of the circadian rhythm. That is, it is a substance capable of therapeutically entraining or re-entraining long-term desynchronized or short-term dissociated circadian rhythms in mammals, or prophylactically preventing their disruption following an environmental insult such as is caused by rapid travel across several time zones. The most widely recognized chronobiotic is the hormone melatonin, secreted at night in both diurnal and nocturnal species.

<span class="mw-page-title-main">Anatomical terms of neuroanatomy</span> Terminology used to describe the central and peripheral nervous systems

This article describes anatomical terminology that is used to describe the central and peripheral nervous systems - including the brain, brainstem, spinal cord, and nerves.

References

  1. Klein, Stephen B.; Thorne, B. Michael (Oct 3, 2006). Biological Psychology. Macmillan. p. 579.[ page needed ]
  2. 1 2 Standring, Susan (2016). Gray's anatomy: the anatomical basis of clinical practice ; [get full access and more at ExpertConsult.com] (41. ed.). Philadelphia, Pa.: Elsevier. p. 362. ISBN   9780702052309.
  3. Klein, Stephen B.; Thorne, B. Michael (Oct 3, 2006). Biological Psychology. Macmillan. p. 579.[ page needed ]
  4. 1 2 3 Caputo, Alberto; Ghiringhelli, Laura; Dieci, Massimiliano; Giobbio, Gian Marco; Tenconi, Fernando; Ferrari, Lara; Gimosti, Eleonora; Prato, Katia; Vita, A. (15 December 1998). "Epithalamus calcifications in schizophrenia". European Archives of Psychiatry and Clinical Neuroscience. 248 (6): 272–276. doi:10.1007/s004060050049. PMID   9928904. S2CID   24931369.
  5. Sutherland, Robert J. (March 1982). "The dorsal diencephalic conduction system: A review of the anatomy and functions of the habenular complex". Neuroscience & Biobehavioral Reviews. 6 (1): 1–13. doi:10.1016/0149-7634(82)90003-3. PMID   7041014. S2CID   23735729.
  6. Goutagny, Romain; Loureiro, Michael; Jackson, Jesse; Chaumont, Joseph; Williams, Sylvain; Isope, Philippe; Kelche, Christian; Cassel, Jean-Christophe; Lecourtier, Lucas (November 2013). "Interactions between the Lateral Habenula and the Hippocampus: Implication for Spatial Memory Processes". Neuropsychopharmacology. 38 (12): 2418–2426. doi:10.1038/npp.2013.142. PMC   3799061 . PMID   23736315.
  7. Concha, Miguel L.; Wilson, Stephen W. (July 2001). "Asymmetry in the epithalamus of vertebrates". Journal of Anatomy. 199 (1–2): 63–84. doi:10.1046/j.1469-7580.2001.19910063.x. PMC   1594988 . PMID   11523830.
  8. 1 2 Samuel, Daniel Silas; Duraisamy, Revathi; Kumar, M. P. Santhosh (January 1, 2019). "Pineal Gland - A mystic gland". Drug Intervention Today. 11 (1): 55–58. Archived from the original on August 28, 2021. Retrieved April 7, 2021.
  9. 1 2 Guilding, C.; Hughes, A.T.L.; Piggins, H.D. (September 2010). "Circadian oscillators in the epithalamus". Neuroscience. 169 (4): 1630–1639. doi:10.1016/j.neuroscience.2010.06.015. PMC   2928449 . PMID   20547209.
  10. Stenberg, D. (May 2007). "Neuroanatomy and neurochemistry of sleep". Cellular and Molecular Life Sciences. 64 (10): 1187–1204. doi:10.1007/s00018-007-6530-3. PMID   17364141. S2CID   10291621.

See also