Calcification

Last updated
Density-Dependent Colour Scanning Electron Micrograph SEM (DDC-SEM) of cardiovascular calcification, showing in orange calcium phosphate spherical particles (denser material) and, in green, the extracellular matrix (less dense material). Cardiovascular calcification - Sergio Bertazzo.tif
Density-Dependent Colour Scanning Electron Micrograph SEM (DDC-SEM) of cardiovascular calcification, showing in orange calcium phosphate spherical particles (denser material) and, in green, the extracellular matrix (less dense material).

Calcification is the accumulation of calcium salts in a body tissue. It normally occurs in the formation of bone, but calcium can be deposited abnormally in soft tissue, [1] [2] causing it to harden. Calcifications may be classified on whether there is mineral balance or not, and the location of the calcification. [3] Calcification may also refer to the processes of normal mineral deposition in biological systems, such as the formation of stromatolites or mollusc shells (see Biomineralization).

Contents

Signs and symptoms

Calcification can manifest itself in many ways in the body depending on the location.

In the pulpal structure of a tooth, calcification often presents asymptomatically, and is diagnosed as an incidental finding during radiographic interpretation. Individual teeth with calcified pulp will typically respond negatively to vitality testing; teeth with calcified pulp often lack sensation of pain, pressure, and temperature.[ citation needed ]

Causes of soft tissue calcification

Calcification of soft tissue (arteries, cartilage, heart valves, [1] [2] etc.) can be caused by vitamin K2 deficiency or by poor calcium absorption due to a high calcium/vitamin D ratio. This can occur with or without a mineral imbalance.

A common misconception is that calcification is caused by excess amount of calcium in diet. Dietary calcium intake is not associated with accumulation of calcium in soft tissue, and calcification occurs irrespective of the amount of calcium intake. [4]

Intake of excessive vitamin D can cause vitamin D poisoning and excessive intake of calcium from the intestine which, when accompanied by a deficiency of vitamin K (perhaps induced by an anticoagulant), can result in calcification of arteries and other soft tissue. [5] Such metastatic soft tissue calcification is mainly in tissues containing "calcium catchers" such as elastic fibres or mucopolysaccharides. These tissues especially include the lungs (pumice lung) and the aorta. [6]

Mineral balance

Forms

Calcification can be pathological or a standard part of the aging process. Nearly all adults show calcification of the pineal gland. [7]

Location

Breast disease

In a number of breast pathologies, calcium is often deposited at sites of cell death or in association secretions or hyalinized stroma, resulting in pathologic calcification. For example, small, irregular, linear calcifications may be seen, via mammography, in a ductal carcinoma-in-situ to produce visible radio-opacities. [10]

Arteriosclerotic calcification

One of the principal causes of arterial stiffening with age is vascular calcification. Vascular calcification is the deposition of mineral in the form of calcium phosphate salts in the smooth muscle-rich medial layer of large arteries including the aorta. DNA damage, especially oxidative DNA damage, causes accelerated vascular calcification. [11] Vascular calcification could also be linked to the chronic leakage of blood lysates into the vessel wall since red blood cells have been shown to contain a high concentration of calcium. [12]

Diagnosis

In terms of diagnosis, in this case vascular calcification, an ultrasound and radiography of said area is sufficient. [13]

Treatment

Treatment of high calcium/vitamin D ratio may most easily be accomplished by intake of more vitamin D if vitamin K is normal.[ citation needed ] Intake of too much vitamin D would be evident by anorexia, loss of appetite, or soft tissue calcification.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Vitamin K</span> Fat-soluble vitamers

Vitamin K is a family of structurally similar, fat-soluble vitamers found in foods and marketed as dietary supplements. The human body requires vitamin K for post-synthesis modification of certain proteins that are required for blood coagulation or for controlling binding of calcium in bones and other tissues. The complete synthesis involves final modification of these so-called "Gla proteins" by the enzyme gamma-glutamyl carboxylase that uses vitamin K as a cofactor.

<span class="mw-page-title-main">Atherosclerosis</span> Inflammatory disease involving buildup of lesions in the walls of arteries

Atherosclerosis is a pattern of the disease arteriosclerosis, characterized by development of abnormalities called lesions in walls of arteries. This is a chronic inflammatory disease involving many different cell types, and driven by elevated levels of cholesterol in the blood. These lesions may lead to narrowing of the arterial walls due to buildup of atheromatous plaques. At onset there are usually no symptoms, but if they develop, symptoms generally begin around middle age. In severe cases, it can result in coronary artery disease, stroke, peripheral artery disease, or kidney disorders, depending on which body part(s) the affected arteries are located in the body.

<span class="mw-page-title-main">Arteriosclerosis</span> Thickening, hardening and loss of elasticity of the walls of arteries

Arteriosclerosis, literally meaning "hardening of the arteries", is an umbrella term for a vascular disorder characterized by abnormal thickening, hardening, and loss of elasticity of the walls of arteries; this process gradually restricts the blood flow to one's organs and tissues and can lead to severe health risks brought on by atherosclerosis, which is a specific form of arteriosclerosis caused by the buildup of fatty plaques, cholesterol, and some other substances in and on the artery walls.

<span class="mw-page-title-main">Brachiocephalic artery</span> Artery of the mediastinum

The brachiocephalic artery, brachiocephalic trunk, or innominate artery is an artery of the mediastinum that supplies blood to the right arm, head, and neck.

<span class="mw-page-title-main">Interventional radiology</span> Medical subspecialty

Interventional radiology (IR) is a medical specialty that performs various minimally-invasive procedures using medical imaging guidance, such as x-ray fluoroscopy, computed tomography, magnetic resonance imaging, or ultrasound. IR performs both diagnostic and therapeutic procedures through very small incisions or body orifices. Diagnostic IR procedures are those intended to help make a diagnosis or guide further medical treatment, and include image-guided biopsy of a tumor or injection of an imaging contrast agent into a hollow structure, such as a blood vessel or a duct. By contrast, therapeutic IR procedures provide direct treatment—they include catheter-based medicine delivery, medical device placement, and angioplasty of narrowed structures.

<span class="mw-page-title-main">Osteomalacia</span> Softening of bones due to impaired bone metabolism

Osteomalacia is a disease characterized by the softening of the bones caused by impaired bone metabolism primarily due to inadequate levels of available phosphate, calcium, and vitamin D, or because of resorption of calcium. The impairment of bone metabolism causes inadequate bone mineralization.

<span class="mw-page-title-main">Dystrophic calcification</span> Calcification occurring in degenerated or necrotic tissue

Dystrophic calcification (DC) is the calcification occurring in degenerated or necrotic tissue, as in hyalinized scars, degenerated foci in leiomyomas, and caseous nodules. This occurs as a reaction to tissue damage, including as a consequence of medical device implantation. Dystrophic calcification can occur even if the amount of calcium in the blood is not elevated, in contrast to metastatic calcification, which is a consequence of a systemic mineral imbalance, including hypercalcemia and/or hyperphosphatemia, that leads to calcium deposition in healthy tissues. In dystrophic calcification, basophilic calcium salt deposits aggregate, first in the mitochondria, then progressively throughout the cell. These calcifications are an indication of previous microscopic cell injury, occurring in areas of cell necrosis when activated phosphatases bind calcium ions to phospholipids in the membrane.

Renal osteodystrophy is currently defined as an alteration of bone morphology in patients with chronic kidney disease (CKD). It is one measure of the skeletal component of the systemic disorder of chronic kidney disease-mineral and bone disorder (CKD-MBD). The term "renal osteodystrophy" was coined in 1943, 60 years after an association was identified between bone disease and kidney failure.

<span class="mw-page-title-main">Hypophosphatasia</span> Metabolic bone disease

Hypophosphatasia (; also called deficiency of alkaline phosphatase, phosphoethanolaminuria, or Rathbun's syndrome; sometimes abbreviated HPP) is a rare, and sometimes fatal, inherited metabolic bone disease. Clinical symptoms are heterogeneous, ranging from the rapidly fatal, perinatal variant, with profound skeletal hypomineralization, respiratory compromise or vitamin B6 dependent seizures to a milder, progressive osteomalacia later in life. Tissue non-specific alkaline phosphatase (TNSALP) deficiency in osteoblasts and chondrocytes impairs bone mineralization, leading to rickets or osteomalacia. The pathognomonic finding is subnormal serum activity of the TNSALP enzyme, which is caused by one of 388 genetic mutations identified to date, in the gene encoding TNSALP. Genetic inheritance is autosomal recessive for the perinatal and infantile forms but either autosomal recessive or autosomal dominant in the milder forms.

<span class="mw-page-title-main">Vitamin D toxicity</span> Human disease

Vitamin D toxicity, or hypervitaminosis D, is the toxic state of an excess of vitamin D. The normal range for blood concentration in adults is 20 to 50 nanograms per milliliter (ng/mL).

<span class="mw-page-title-main">Metastatic calcification</span> Deposition of calcium salts in tissue due to excess calcium in blood

Metastatic calcification is deposition of calcium salts in otherwise normal tissue, because of elevated serum levels of calcium, which can occur because of deranged metabolism as well as increased absorption or decreased excretion of calcium and related minerals, as seen in hyperparathyroidism.

<span class="mw-page-title-main">Calciphylaxis</span> Painful, necrotic skin lesions associated with chronic kidney disease

Calciphylaxis, also known as calcific uremic arteriolopathy (CUA) or “Grey Scale”, is a rare syndrome characterized by painful skin lesions. The pathogenesis of calciphylaxis is unclear but believed to involve calcification of the small blood vessels located within the fatty tissue and deeper layers of the skin, blood clots, and eventual death of skin cells due to lack of blood flow. It is seen mostly in people with end-stage kidney disease but can occur in the earlier stages of chronic kidney disease and rarely in people with normally functioning kidneys. Calciphylaxis is a rare but serious disease, believed to affect 1-4% of all dialysis patients. It results in chronic non-healing wounds and indicates poor prognosis, with typical life expectancy of less than one year.

<span class="mw-page-title-main">Monckeberg's arteriosclerosis</span> Type of artery-hardening disease

Mönckeberg's arteriosclerosis, or Mönckeberg's sclerosis, is a non-inflammatory form of arteriosclerosis, which differs from atherosclerosis traditionally. Calcium deposits are found in the muscular middle layer of the walls of arteries with no obstruction of the lumen. It is an example of dystrophic calcification. This condition occurs as an age-related degenerative process. However, it can occur in pseudoxanthoma elasticum and idiopathic arterial calcification of infancy as a pathological condition, as well. Its clinical significance and cause are not well understood and its relationship to atherosclerosis and other forms of vascular calcification are the subject of disagreement. Mönckeberg's arteriosclerosis is named after Johann Georg Mönckeberg, who first described it in 1903.

<span class="mw-page-title-main">Matrix Gla protein</span>

Matrix Gla protein (MGP) is member of a family of vitamin K2 dependent, Gla-containing proteins. MGP has a high affinity binding to calcium ions, similar to other Gla-containing proteins. The protein acts as an inhibitor of vascular mineralization and plays a role in bone organization.

<span class="mw-page-title-main">Keutel syndrome</span> Medical condition

Keutel syndrome (KS) is a rare autosomal recessive genetic disorder characterized by abnormal diffuse cartilage calcification, hypoplasia of the mid-face, peripheral pulmonary stenosis, hearing loss, short distal phalanges (tips) of the fingers and mild mental retardation. Individuals with KS often present with peripheral pulmonary stenosis, brachytelephalangism, sloping forehead, midface hypoplasia, and receding chin. It is associated with abnormalities in the gene coding for matrix gla protein, MGP. Being an autosomal recessive disorder, it may be inherited from two unaffected, abnormal MGP-carrying parents. Thus, people who inherit two affected MGP alleles will likely inherit KS.

<span class="mw-page-title-main">Ectopic calcification</span> Formation of calcium deposits or bone in soft tissues

Ectopic calcification is a pathologic deposition of calcium salts in tissues or bone growth in soft tissues. This can be a symptom of hyperphosphatemia. Formation of osseous tissue in soft tissues such as the lungs, eyes, arteries, or other organs is known as ectopic calcification, dystrophic calcification, or ectopic ossification.

Generalized arterial calcification of infancy (GACI) is an extremely rare genetic disorder. It is caused by mutations in the ENPP1 gene in 75% of the subjects or in mutations in the ABCC6 genes in 10% of patients. However, sometimes individuals affected with GACI do not have mutations in the ENPP1 or ABCC6 gene and in those cases the cause of the disorder is unknown.

<span class="mw-page-title-main">Pulp stone</span>

Pulp stones are nodular, calcified masses appearing in either or both the coronal and root portion of the pulp organ in teeth. Pulp stones are not painful unless they impinge on nerves.

Vitamin K<sub>2</sub> Group of vitamins and bacterial metabolites

Vitamin K2 or menaquinone (MK) is one of three types of vitamin K, the other two being vitamin K1 (phylloquinone) and K3 (menadione). K2 is both a tissue and bacterial product (derived from vitamin K1 in both cases) and is usually found in animal products or fermented foods.

Chronic kidney disease–mineral and bone disorder (CKD–MBD) is one of the many complications associated with chronic kidney disease. It represents a systemic disorder of mineral and bone metabolism due to CKD manifested by either one or a combination of the following:

References

  1. 1 2 3 Bertazzo, Sergio; Gentleman, Eileen; Cloyd, Kristy L.; Chester, Adrian H.; Yacoub, Magdi H.; Stevens, Molly M. (2013). "Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification". Nature Materials. 12 (6): 576–583. Bibcode:2013NatMa..12..576B. doi:10.1038/nmat3627. ISSN   1476-1122. PMC   5833942 . PMID   23603848.
  2. 1 2 Miller, J. D. Cardiovascular calcification: Orbicular origins. Nature Materials12, 476-478 (2013).
  3. Calcification The American Heritage Science Dictionary. Retrieved 2013-03-23.
  4. "Calcium beyond the bones". Harvard health Publishing. March 1, 2010.
  5. Paul Price, et al., "Warfarin-Induced Artery Calcification Is Accelerated by Growth and Vitamin D", Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, Vol. 20, pp. 317-327.
  6. McGavin, Zachary. Pathologic basis of veterinary disease, fourth edition; Elsevier 2007.
  7. Zimmerman, Robert A (1982). "Age-Related Incidence of Pineal Calcification Detected by Computed Tomography" (PDF). Radiology. 142 (3). Radiological Society of North America: 659–62. doi:10.1148/radiology.142.3.7063680. PMID   7063680. Archived from the original (PDF) on 2012-03-24. Retrieved 21 June 2012.
  8. Muzio, Bruno Di. "Normal intracranial calcifications | Radiology Reference Article | Radiopaedia.org". Radiopaedia.
  9. Fanlu, Meng; Changqiu, Wang; Yan, Li; Anhuai, Lu; Fang, Mei; Jianying, Liu; Jingyun, Du; Yan, Zhang (2015). "Psammoma bodies in two types of human ovarian tumours: A mineralogical study". Mineralogy and Petrology. 109 (3): 357–365. Bibcode:2015MinPe.109..357F. doi:10.1007/s00710-014-0342-6.
  10. Robbins and Cotran (2009), Pathologic Basis of Disease, 8th edition, Elsevier.
  11. Duer, M.; Cobb, A. M.; Shanahan, C. M. (2020). "DNA Damage Response: A Molecular Lynchpin in the Pathobiology of Arteriosclerotic Calcification". Arteriosclerosis, Thrombosis, and Vascular Biology. 40 (7): e193–e202. doi: 10.1161/ATVBAHA.120.313792 . PMID   32404005. S2CID   218634735.
  12. Fu, Hualin; Li, Jilong; Du, Peng; Jin, Weilin; Gao, Guo; Cui, Daxiang (2022-11-30). "Senile plaques in Alzheimer's disease arise from Aβ- and Cathepsin D-enriched mixtures leaking out during intravascular haemolysis and microaneurysm rupture". FEBS Letters. 597 (7): 1007–1040. doi:10.1002/1873-3468.14549. ISSN   1873-3468. PMID   36448495. S2CID   254095098.
  13. Raggi, Paolo; Bellasi, Antonio (2007). "Clinical assessment of vascular calcification". Advances in Chronic Kidney Disease. 14 (1): 37–43. doi:10.1053/j.ackd.2006.10.006. ISSN   1548-5595. PMID   17200042.