Vitamin K deficiency | |
---|---|
Specialty | Endocrinology |
Symptoms | bruising, petechiae, hematomas, oozing of blood at surgical or puncture sites, stomach pains, cartilage calcification, and severe malformation of developing bone or deposition of insoluble calcium salts in the walls of arteries. |
Causes | insufficient dietary vitamin K 1 or vitamin K2 or both |
Medication | phytonadione |
Vitamin K deficiency results from insufficient dietary vitamin K 1 or vitamin K2 or both. [1]
Symptoms include bruising, [2] petechiae, [2] [3] and hematomas.
Vitamin K is changed to its active form in the liver by the enzyme Vitamin K epoxide reductase. Activated vitamin K is then used to gamma carboxylate (and thus activate) certain enzymes involved in coagulation: Factors II, VII, IX, X, and protein C and protein S. The inability to activate the clotting cascade via these factors leads to the bleeding symptoms mentioned above.[ citation needed ]
Notably, when one examines the lab values in Vitamin K deficiency [see below] the prothrombin time is elevated, but the partial thromboplastin time is normal or only mildly prolonged. The deficiency leads to decreased activity in the intrinsic pathway (F-IX) factors, monitored by PTT, and the extrinsic pathway (F-VII) which PT monitors. However, factor VII has the shortest half-life of all the factors carboxylated by vitamin K; therefore, when deficient, it is the PT that rises first, since the activated Factor VII is the first to "disappear." In later stages of deficiency, the other factors (which have longer half-lives) can "catch up," and the PTT also rises.
Vitamin K1-deficiency may occur by disturbed intestinal uptake (such as would occur in a bile duct obstruction), by therapeutic or accidental intake of a vitamin K1-antagonist such as warfarin, or, very rarely, by nutritional vitamin K1 deficiency. As a result, Gla-residues are inadequately formed and the Gla-proteins are insufficiently active.[ citation needed ]
The prevalence of vitamin K deficiency varies by geographic region. For infants in the United States, vitamin K1 deficiency without bleeding may occur in as many as 50% of infants younger than 5 days old, with the classic hemorrhagic disease occurring in 0.25-1.7% of infants. [2] Therefore, the Committee on Nutrition of the American Academy of Pediatrics recommends that 0.5 to 1.0 mg Vitamin K1 be administered to all newborns shortly after birth. [4]
Postmenopausal and elderly women in Thailand have a high risk of Vitamin K2 deficiency, compared with the normal value of young, reproductive females. [5] Current dosage recommendations for Vitamin K may be too low. [6] The deposition of calcium in soft tissues, including arterial walls, is quite common, especially in those who have atherosclerosis, suggesting that Vitamin K deficiency is more common than previously thought. [7]
Because colonic bacteria synthesize a significant portion of the Vitamin K required for human needs, individuals with disruptions to or insufficient amounts of these bacteria can be at risk for Vitamin K deficiency. As mentioned above, newborns fit into this category, as their colons are frequently not adequately colonized in the first five to seven days of life. Another at-risk population comprises those individuals on any long-term antibiotic therapy, as this can diminish the population of normal gut flora. [8]
Vitamin K is a family of structurally similar, fat-soluble vitamers found in foods and marketed as dietary supplements. The human body requires vitamin K for post-synthesis modification of certain proteins that are required for blood coagulation or for controlling binding of calcium in bones and other tissues. The complete synthesis involves final modification of these so-called "Gla proteins" by the enzyme gamma-glutamyl carboxylase that uses vitamin K as a cofactor.
A thrombus, colloquially called a blood clot, is the final product of the blood coagulation step in hemostasis. There are two components to a thrombus: aggregated platelets and red blood cells that form a plug, and a mesh of cross-linked fibrin protein. The substance making up a thrombus is sometimes called cruor. A thrombus is a healthy response to injury intended to stop and prevent further bleeding, but can be harmful in thrombosis, when a clot obstructs blood flow through a healthy blood vessel in the circulatory system.
Coagulation, also known as clotting, is the process by which blood changes from a liquid to a gel, forming a blood clot. It results in hemostasis, the cessation of blood loss from a damaged vessel, followed by repair. The process of coagulation involves activation, adhesion and aggregation of platelets, as well as deposition and maturation of fibrin.
Prothrombin is encoded in the human by the F2-gene. It is proteolytically cleaved during the clotting process by the prothrombinase enzyme complex to form thrombin.
Carboxyglutamic acid, is an uncommon amino acid introduced into proteins by a post-translational carboxylation of glutamic acid residues. This modification is found, for example, in clotting factors and other proteins of the coagulation cascade. This modification introduces an affinity for calcium ions. In the blood coagulation cascade, vitamin K is required to introduce γ-carboxylation of clotting factors II, VII, IX, X and protein Z.
The partial thromboplastin time (PTT), also known as the activated partial thromboplastin time, is a blood test that characterizes coagulation of the blood. A historical name for this measure is the Kaolin-cephalin clotting time (KCCT), reflecting kaolin and cephalin as materials historically used in the test. Apart from detecting abnormalities in blood clotting, partial thromboplastin time is also used to monitor the treatment effect of heparin, a widely prescribed drug that reduces blood's tendency to clot.
Protein C, also known as autoprothrombin IIA and blood coagulation factor XIV, is a zymogen, that is, an inactive enzyme. The activated form plays an important role in regulating anticoagulation, inflammation, and cell death and maintaining the permeability of blood vessel walls in humans and other animals. Activated protein C (APC) performs these operations primarily by proteolytically inactivating proteins Factor Va and Factor VIIIa. APC is classified as a serine protease since it contains a residue of serine in its active site. In humans, protein C is encoded by the PROC gene, which is found on chromosome 2.
Phytomenadione, also known as vitamin K1 or phylloquinone, is a vitamin found in food and used as a dietary supplement. It is on the World Health Organization's List of Essential Medicines.
Warfarin-induced skin necrosis is a condition in which skin and subcutaneous tissue necrosis occurs due to acquired protein C deficiency following treatment with anti-vitamin K anticoagulants.
Protein C deficiency is a rare genetic trait that predisposes to thrombotic disease. It was first described in 1981. The disease belongs to a group of genetic disorders known as thrombophilias. Protein C deficiency is associated with an increased incidence of venous thromboembolism, whereas no association with arterial thrombotic disease has been found.
Factor X deficiency is a bleeding disorder characterized by a lack in the production of factor X (FX), an enzyme protein that causes blood to clot in the coagulation cascade. Produced in the liver FX when activated cleaves prothrombin to generate thrombin in the intrinsic pathway of coagulation. This process is vitamin K dependent and enhanced by activated factor V.
Vitamin K deficiency bleeding (VKDB) of the newborn, previously known as haemorrhagic disease of the newborn, is a rare form of bleeding disorder that affects newborns and young infants due to low stores of vitamin K at birth. It commonly presents with intracranial haemorrhage with the risk of brain damage or death.
Hyperprolinemia is a condition which occurs when the amino acid proline is not broken down properly by the enzymes proline oxidase or pyrroline-5-carboxylate dehydrogenase, causing a buildup of proline in the body.
Matrix Gla protein (MGP) is member of a family of vitamin K2 dependent, Gla-containing proteins. MGP has a high affinity binding to calcium ions, similar to other Gla-containing proteins. The protein acts as an inhibitor of vascular mineralization and plays a role in bone organization.
Keutel syndrome (KS) is a rare autosomal recessive genetic disorder characterized by abnormal diffuse cartilage calcification, hypoplasia of the mid-face, peripheral pulmonary stenosis, hearing loss, short distal phalanges (tips) of the fingers and mild mental retardation. Individuals with KS often present with peripheral pulmonary stenosis, brachytelephalangism, sloping forehead, midface hypoplasia, and receding chin. It is associated with abnormalities in the gene coding for matrix gla protein, MGP. Being an autosomal recessive disorder, it may be inherited from two unaffected, abnormal MGP-carrying parents. Thus, people who inherit two affected MGP alleles will likely inherit KS.
Vitamin D deficiency or hypovitaminosis D is a vitamin D level that is below normal. It most commonly occurs in people when they have inadequate exposure to sunlight, particularly sunlight with adequate ultraviolet B rays (UVB). Vitamin D deficiency can also be caused by inadequate nutritional intake of vitamin D; disorders that limit vitamin D absorption; and disorders that impair the conversion of vitamin D to active metabolites, including certain liver, kidney, and hereditary disorders. Deficiency impairs bone mineralization, leading to bone-softening diseases, such as rickets in children. It can also worsen osteomalacia and osteoporosis in adults, increasing the risk of bone fractures. Muscle weakness is also a common symptom of vitamin D deficiency, further increasing the risk of falls and bone fractures in adults. Vitamin D deficiency is associated with the development of schizophrenia.
Vitamin K reactions are adverse side effects that may occur after injection with vitamin K. The liver utilizes vitamin K to produce coagulation factors that help the body form blood clots which prevent excessive bleeding. Vitamin K injections are administered to newborns as a preventative measure to reduce the risk of hemorrhagic disease of the newborn (HDN).
Vitamin K2 or menaquinone (MK) is one of three types of vitamin K, the other two being vitamin K1 (phylloquinone) and K3 (menadione). K2 is both a tissue and bacterial product (derived from vitamin K1 in both cases) and is usually found in animal products or fermented foods.
Neonatal hypocalcemia is an abnormal clinical and laboratory hypocalcemia condition that is frequently observed in infants. It is commonly presented within the first 72 hours of a newborn's life. Neonatal hypocalcemia can cause seizures in infants requiring a calcium infusion until homeostasis is achieved; allowing for positive clinical outcomes within weeks of treatment.
A Vitamin K-dependent protein (VKDP) is a protein that can bind calcium ions but only after being carboxylated at a certain glutamic residue. This carboxylation, said to activate the protein, is facilitated by some form of vitamin K1 or vitamin K2. The relevant part of a vitamin K-dependent protein is a Gla domain, and such a protein is informally called a Gla protein. Some Gla proteins have "Gla" in their name, for example Matrix Gla protein, but many don't, such as osteocalcin.
{{cite journal}}
: Cite journal requires |journal=
(help)