Scalp

Last updated
Scalp
Layers of the scalp and meninges.png
Illustration depicting the layers of the scalp and meninges
Double cowlick.jpg
Scalp
Details
Artery supratrochlear, supraorbital, superficial temporal, occipital
Vein superficial temporal, posterior auricular, occipital
Nerve supratrochlear, supraorbital, greater occipital, lesser occipital, zygomaticotemporal, auriculotemporal
Lymph occipital, mastoid
Identifiers
Latin scalpus
MeSH D012535
FMA 46494
Anatomical terminology

The scalp is the area of the head where head hair grows. It is made up of skin, layers of connective and fibrous tissues, and the membrane of the skull. Anatomically, the scalp is part of the epicranium, a collection of structures covering the cranium. The scalp is bordered by the face at the front, and by the neck at the sides and back. The scientific study of hair and scalp is called trichology.

Contents

Structure

Diagrammatic section of scalp Gray1196.png
Diagrammatic section of scalp
Illustration of the scalp and meninges Blausen 0110 BrainLayers.png
Illustration of the scalp and meninges

Layers

The scalp is usually described as having five layers, which can be remembered using the mnemonic 'SCALP':

Blood supply

The blood supply of the scalp is via five pairs of arteries, three from the external carotid and two from the internal carotid:

Because the walls of the blood vessels are firmly attached to the fibrous tissue of the superficial fascial layer, cut ends of vessels here do not readily retract; even a small scalp wound may bleed profusely.

Venous drainage The veins of the scalp accompany the arteries and thus have similar names, e.g. Supratrochlear and supraorbital veins, which unite at the medial angle of the eye, and form the angular vein, which further continues as the facial vein.

The superficial temporal vein descends in front of the tragus, enters the parotid gland, and then joins the maxillary vein to form the retromandibular vein. The anterior part of it unites with the facial vein to form the common facial vein, which drains into jugular vein, and ultimately to the subclavian vein. The occipital vein terminates to the sub-occipital plexus.

There are other veins, like the emissary vein and frontal diploic vein, which also contribute to the venous drainage.

Nerve supply

Innervation is the connection of nerves to the scalp: the sensory and motor nerves innervating the scalp. The scalp is innervated by the following:

The innervation of scalp can be remembered using the mnemonic 'Z-GLASS' for Zygomaticotemporal nerve, Greater occipital nerve, Lesser occipital nerve, Auriculotemporal nerve, Supratrochlear nerve, and Supraorbital nerve.

The motor innervation of the scalp, specifically, the occipitofrontalis muscle, is split into two main factions: the frontal belly or frontalis muscle is supplied by the temporal branch of facial nerve, while the occipital belly or occipitalis is supplied by the posterior auricular branch of facial nerve.

Lymphatic drainage

Lymphatic channels from the posterior half of the scalp drain to occipital and posterior auricular nodes. Lymphatic channels from the anterior half drain to the parotid nodes. The lymph eventually reaches the submandibular and deep cervical nodes.

Clinical significance

Infection

The 'danger area of the scalp' is the area of loose connective tissue. This is because pus and blood spread easily within it, and can pass into the cranial cavity along the emissary veins. Therefore, infection can spread from the scalp to the meninges, which could lead to meningitis.[ citation needed ]

Injury

The clinically important layer is the aponeurosis. Scalp lacerations through this layer mean that the "anchoring" of the superficial layers is lost and gaping of the wound occurs which would require suturing. This can be achieved with simple or vertical mattress sutures using a non-absorbable material, which are subsequently removed at around days 7–10.

Hair transplantation

All the current hair transplantation techniques utilize the patient's existing hair. The aim of the surgical procedure is to use such hair as efficiently as possible. The right candidates for this type of surgery are individuals who still have healthy hair on the sides and the back of the head in order that hair for the transplant may be harvested from those areas. Different techniques are utilized in order to obtain the desired cosmetic results; factors considered may include hair color, texture, curliness, etc.

The most utilized technique is the one known as micro grafting because it produces naturalistic results. It is akin to follicular unit extraction, although less advanced. A knife with multiple blades is used to remove tissue from donor areas. The removed tissue is then fragmented into smaller chunks under direct vision inspection (i.e., without a microscope).

Disease

The scalp is a common site for the development of tumours including:

Scalp conditions

Society and culture

The scalp plays an important role in the aesthetics of the face. Androgenic alopecia, or male pattern hair loss, is a common cause of concern to men. It may be treated with varying rates success by medication (e.g. finasteride, minoxidil) or hair transplantation. If the scalp is heavy and loose, a common change with ageing, the forehead may be low, heavy and deeply lined. The brow lift procedure aims to address these concerns.

Scalping is the act of removing a human scalp, usually with hair, as a trophy. Often associated with the history of North America, scalping developed independently on multiple continents and dates back to antiquity.

See also

Related Research Articles

Articles related to anatomy include:

<span class="mw-page-title-main">Great auricular nerve</span> Cutaneous nerve of the head

The great auricular nerve is a cutaneous (sensory) nerve of the head. It originates from the second and third cervical (spinal) nerves (C2-C3) of the cervical plexus. It provides sensory innervation to the skin over the parotid gland and the mastoid process, parts of the outer ear, and to the parotid gland and its fascia.

<span class="mw-page-title-main">Parotid gland</span> Major salivary gland in many animals

The parotid gland is a major salivary gland in many animals. In humans, the two parotid glands are present on either side of the mouth and in front of both ears. They are the largest of the salivary glands. Each parotid is wrapped around the mandibular ramus, and secretes serous saliva through the parotid duct into the mouth, to facilitate mastication and swallowing and to begin the digestion of starches. There are also two other types of salivary glands; they are submandibular and sublingual glands. Sometimes accessory parotid glands are found close to the main parotid glands.

<span class="mw-page-title-main">External carotid artery</span> Major artery of the head and neck

The external carotid artery is a major artery of the head and neck. It arises from the common carotid artery when it splits into the external and internal carotid artery. The external carotid artery supplies blood to the face, brain and neck.

<span class="mw-page-title-main">Internal carotid artery</span> Artery of the human brain

The internal carotid artery is an artery in the neck which supplies the anterior circulation of the brain.

<span class="mw-page-title-main">Dura mater</span> Outermost layer of the protective tissues around the central nervous system (meninges)

In neuroanatomy, dura mater is a thick membrane made of dense irregular connective tissue that surrounds the brain and spinal cord. It is the outermost of the three layers of membrane called the meninges that protect the central nervous system. The other two meningeal layers are the arachnoid mater and the pia mater. It envelops the arachnoid mater, which is responsible for keeping in the cerebrospinal fluid. It is derived primarily from the neural crest cell population, with postnatal contributions of the paraxial mesoderm.

<span class="mw-page-title-main">Middle meningeal artery</span> Artery supplying the meninges

The middle meningeal artery is typically the third branch of the first portion of the maxillary artery. After branching off the maxillary artery in the infratemporal fossa, it runs through the foramen spinosum to supply the dura mater and the calvaria. The middle meningeal artery is the largest of the three (paired) arteries that supply the meninges, the others being the anterior meningeal artery and the posterior meningeal artery.

<span class="mw-page-title-main">Auriculotemporal nerve</span> Branch of the mandibular nerve

The auriculotemporal nerve is a sensory branch of the mandibular nerve (CN V3) that runs with the superficial temporal artery and vein, and provides sensory innervation to parts of the external ear, scalp, and temporomandibular joint. The nerve also conveys post-ganglionic parasympathetic fibres from the otic ganglion to the parotid gland.

The epicranium is the medical term for the collection of structures covering the cranium. It consists of the muscles, aponeurosis, and skin.

<span class="mw-page-title-main">Superficial temporal artery</span> Major artery of the head

In human anatomy, the superficial temporal artery is a major artery of the head. It arises from the external carotid artery when it splits into the superficial temporal artery and maxillary artery.

<span class="mw-page-title-main">Occipitofrontalis muscle</span> Facial muscle helping to create facial expressions

The occipitofrontalis muscle is a muscle which covers parts of the skull. It consists of two parts or bellies: the occipital belly, near the occipital bone, and the frontal belly, near the frontal bone. It is supplied by the supraorbital artery, the supratrochlear artery, and the occipital artery. It is innervated by the facial nerve. In humans, the occipitofrontalis helps to create facial expressions.

<span class="mw-page-title-main">Occipital artery</span>

The occipital artery is a branch of the external carotid artery that provides arterial supply to the back of the scalp, sternocleidomastoid muscles, and deep muscles of the back and neck.

<span class="mw-page-title-main">Supratrochlear nerve</span> Nerve of the forehead

The supratrochlear nerve is a branch of the frontal nerve, itself a branch of the ophthalmic nerve (CN V1) from the trigeminal nerve (CN V). It provides sensory innervation to the skin of the forehead and the upper eyelid.

<span class="mw-page-title-main">Posterior auricular artery</span> Small artery

The posterior auricular artery is a small artery that arises from the external carotid artery. It ascends along the side of the head. It supplies several muscles of the neck and several structures of the head.

<span class="mw-page-title-main">Petrous part of the temporal bone</span> Feature at the base of the human skull

The petrous part of the temporal bone is pyramid-shaped and is wedged in at the base of the skull between the sphenoid and occipital bones. Directed medially, forward, and a little upward, it presents a base, an apex, three surfaces, and three angles, and houses in its interior, the components of the inner ear. The petrous portion is among the most basal elements of the skull and forms part of the endocranium. Petrous comes from the Latin word petrosus, meaning "stone-like, hard". It is one of the densest bones in the body. In other mammals, it is a separate bone, the petrosal bone.

<span class="mw-page-title-main">Head and neck anatomy</span>

This article describes the anatomy of the head and neck of the human body, including the brain, bones, muscles, blood vessels, nerves, glands, nose, mouth, teeth, tongue, and throat.

<span class="mw-page-title-main">Outline of human anatomy</span> Overview of and topical guide to human anatomy

The following outline is provided as an overview of and topical guide to human anatomy:

<span class="mw-page-title-main">Anterior auricular muscle</span> Muscle connectingthe epicranial aponeurosis to the helix of the ear

The anterior auricular muscle, the smallest of the three auricular muscles, is thin and fan-shaped, and its fibers are pale and indistinct. It arises from the lateral edge of the epicranial aponeurosis, and its fibers converge to be inserted into a projection on the front of the helix.

Scalp reconstruction is a surgical procedure for people with scalp defects. Scalp defects may be partial or full thickness and can be congenital or acquired. Because not all layers of the scalp are elastic and the scalp has a convex shape, the use of primary closure is limited. Sometimes the easiest way of closing the wound may not be the ideal or best way. The choice for a reconstruction depends on multiple factors, such as the defect itself, the patient characteristics and surgeon preference.

The cheek constitutes the facial periphery and plays a key role in the maintenance of oral competence and mastication. It is also involved in the facial manifestation of human emotion and supports neighboring primary structures.

References