Sex organ

Last updated

The sex organs of the green algae Chara are the male antheridia (red) and female archegonia (brown). CharaV3.jpg
The sex organs of the green algae Chara are the male antheridia (red) and female archegonia (brown).

A sex organ, also known as a reproductive organ, is a part of an organism that is involved in sexual reproduction. Sex organs constitute the primary sex characteristics of an organism. Sex organs are responsible for producing and transporting gametes, as well as facilitating fertilization and supporting the development and birth of offspring. Sex organs are found in many species of animals and plants, with their features varying depending on the species.

Contents

Sex organs are typically differentiated into male and female types.

In animals (including humans), the male sex organs include the testicles, epididymides, and penis; the female sex organs include the clitoris, ovaries, oviducts, and vagina. The testicle in the male and the ovary in the female are called the primary sex organs. [1] All other sex-related organs are called secondary sex organs. The outer organs are known as the genitals or external genitalia, visible at birth in both sexes, [1] [ pages needed ] while the inner organs are referred to as internal genitalia, which in both sexes are always hidden. [2]

In plants, male reproductive structures include stamens in flowering plants, which produce pollen. [3] Female reproductive structures, such as pistils in flowering plants, produce ovules and receive pollen for fertilization. [4] Mosses, ferns, and some similar plants have gametangia for reproductive organs, which are part of the gametophyte. [5] The flowers of flowering plants produce pollen and egg cells, but the sex organs themselves are inside the gametophytes within the pollen and the ovule. [6] Coniferous plants likewise produce their sexually reproductive structures within the gametophytes contained within the cones and pollen. The cones and pollen are not themselves sexual organs.

Together, the sex organs constitute an organism's reproductive system. [7]

Terminology

The primary sex organs are the gonads, a pair of internal sex organs, which diverge into testicles following male development or into ovaries following female development.[ citation needed ] As primary sex organs, gonads generate reproductive gametes containing inheritable DNA. They also produce most of the primary hormones that affect sexual development, and regulate other sexual organs and sexually differentiated behaviors.

Secondary sex organs are the rest of the reproductive system, whether internal or external. The Latin term genitalia, sometimes anglicized as genitals, is used to describe the externally visible sex organs.

In general zoology, given the great variety in organs, physiologies, and behaviors involved in copulation, male genitalia are more strictly defined as "all male structures that are inserted in the female or that hold her near her gonopore during sperm transfer"; female genitalia are defined as "those parts of the female reproductive tract that make direct contact with male genitalia or male products (sperm, spermatophores) during or immediately after copulation". [8] [ page needed ]

Evolution

It is hard to find a common origin for gonads. However, gonads most likely evolved independently several times. [9] At first, testes and ovaries evolved due to natural selection. [10]

A consensus has emerged that sexual selection represents a primary factor for genital evolution. [11] Male genitalia show traits of divergent evolution that are driven by sexual selection. [12]

Animals

Mammals

The visible portion of eutherian mammalian genitals for males consists of the penis and scrotum; for females, it consists of the vulva.

In placental mammals, females have two genital orifices, the vaginal and urethral openings, while males have only one for the urethra. [13] Male and female genitals have many nerve endings, resulting in pleasurable and highly sensitive touch. [14] In most human societies, particularly in conservative ones, exposure of the genitals is considered a public indecency. [15]

In humans, sex organs/genitalia include:

Male Female

External

Internal

An image of human male external sex organs (shaved pubic hair) ShortForeskin.jpg
An image of human male external sex organs (shaved pubic hair)

External

Internal

An image of human female external sex organs (shaved pubic hair) Vulva with tiny labia minora.jpg
An image of human female external sex organs (shaved pubic hair)

Development

In typical prenatal development, sex organs originate from a common primordium during early gestation and differentiate into male or female sexes. The SRY gene, usually located on the Y chromosome and encoding the testis determining factor, determines the direction of the differentiation. The absence of it allows the gonads to continue to develop into ovaries.

The development of the internal and external reproductive organs is determined by hormones produced by certain fetal gonads (ovaries or testicles) and the cells' response to them. The initial appearance of the fetal genitalia looks female-like: a pair of urogenital folds with a small protuberance in the middle, and the urethra behind the protuberance. If the fetus has testes and the testes produce testosterone, and if the cells of the genitals respond to the testosterone, the outer urogenital folds swell and fuse in the midline to produce the scrotum; the protuberance grows larger and straighter to form the penis; the inner urogenital swellings grow, wrap around the penis, and fuse in the midline to form the penile raphe. [16] [17] Each sex organ in one sex has a homologous counterpart.

The process of sexual differentiation includes the development of secondary sexual characteristics, such as patterns of pubic and facial hair and female breasts that emerge at puberty.

Because of the strong sexual selection affecting the structure and function of genitalia, they form an organ system that evolves rapidly. [18] [19] [20] A great variety of genital form and function may therefore be found among animals.

In many other animals, a single posterior orifice, called the cloaca, serves as the only opening for the reproductive, digestive, and urinary tracts (if present) in both sexes. All amphibians, birds, reptiles, [21] some fish, and a few mammals (monotremes, tenrecs, golden moles, and marsupial moles) have this orifice, from which they excrete both urine and feces in addition to serving reproductive functions. [22] Excretory systems with analogous purpose in certain invertebrates are also sometimes referred to as cloacae.

Sexing fish is determined by the shape of a fleshy tube behind the anus known as genital papilla.

Insects

The female genitalia of Lepidoptera Female genitalia Lepidoptera.jpg
The female genitalia of Lepidoptera

The organs concerned with insect mating and the deposition of eggs are known collectively as the external genitalia, although they may be largely internal; their components are very diverse in form.

Slugs and snails

The reproductive system of gastropods (slugs and snails) varies greatly from one group to another.

Planaria

Planaria are flat worms widely used in biological research. There are sexual and asexual planaria. Sexual planaria are hermaphrodites, possessing both testicles and ovaries. Each planarian transports its excretion to the other planarian, giving and receiving sperm.

Plants

In most plant species, an individual has both male and female sex organs (a hermaphrodite). [23]

The life cycle of land plants involves alternation of generations between a sporophyte and a haploid gametophyte. [24] The gametophyte produces sperm or egg cells by mitosis. The sporophyte produces spores by meiosis, which in turn develop into gametophytes. Any sex organs that are produced by the plant will develop on the gametophyte. The seed plants, which include conifers and flowering plants, have small gametophytes that develop inside the pollen grains (male) and the ovule (female).

Flowers

In flowering plants, the flowers contain the sex organs. [25]

Sexual reproduction in flowering plants involves the union of the male and female germ cells, sperm and egg cells respectively. Pollen is produced in stamens and is carried to the pistil, which has the ovary at its base where fertilization can take place. Within each pollen grain is a male gametophyte, which consists of only three cells. In most flowering plants, the female gametophyte within the ovule consists of only seven cells. Thus there are no sex organs as such.

Fungi

The sex organs in fungi are called gametangia. In some fungi, the sex organs are indistinguishable from each other but, in other cases, male and female sex organs are clearly different. [26]

Similar gametangia that are similar are called isogametangia. While male and female gametangia are called heterogametangia, which occurs in the majority of fungi. [27]

See also

Related Research Articles

<span class="mw-page-title-main">Gamete</span> A haploid sex cell

A gamete is a haploid cell that fuses with another haploid cell during fertilization in organisms that reproduce sexually. Gametes are an organism's reproductive cells, also referred to as sex cells. The name gamete was introduced by the German cytologist Eduard Strasburger in 1894.

<span class="mw-page-title-main">Gametophyte</span> Haploid stage in the life cycle of plants and algae

A gametophyte is one of the two alternating multicellular phases in the life cycles of plants and algae. It is a haploid multicellular organism that develops from a haploid spore that has one set of chromosomes. The gametophyte is the sexual phase in the life cycle of plants and algae. It develops sex organs that produce gametes, haploid sex cells that participate in fertilization to form a diploid zygote which has a double set of chromosomes. Cell division of the zygote results in a new diploid multicellular organism, the second stage in the life cycle known as the sporophyte. The sporophyte can produce haploid spores by meiosis that on germination produce a new generation of gametophytes.

<span class="mw-page-title-main">Sex</span> Trait that determines an organisms sexually reproductive function

Sex is the trait that determines whether a sexually reproducing organism produces male or female gametes. During sexual reproduction, a male and a female gamete fuse to form a zygote, which develops into an offspring that inherits traits from each parent. By convention, organisms that produce smaller, more mobile gametes are called male, while organisms that produce produce larger, non-mobile gametes are called female. An organism that produces both types of gamete is hermaphrodite.

<span class="mw-page-title-main">Fertilisation</span> Union of gametes of opposite sexes during the process of sexual reproduction to form a zygote

Fertilisation or fertilization, also known as generative fertilisation, syngamy and impregnation, is the fusion of gametes to give rise to a zygote and initiate its development into a new individual organism or offspring. While processes such as insemination or pollination, which happen before the fusion of gametes, are also sometimes informally referred to as fertilisation, these are technically separate processes. The cycle of fertilisation and development of new individuals is called sexual reproduction. During double fertilisation in angiosperms, the haploid male gamete combines with two haploid polar nuclei to form a triploid primary endosperm nucleus by the process of vegetative fertilisation.

<span class="mw-page-title-main">Alternation of generations</span> Reproductive cycle of plants and algae

Alternation of generations is the predominant type of life cycle in plants and algae. In plants both phases are multicellular: the haploid sexual phase – the gametophyte – alternates with a diploid asexual phase – the sporophyte.

<span class="mw-page-title-main">Gonad</span> Gland that produces sex cells

A gonad, sex gland, or reproductive gland is a mixed gland that produces the gametes and sex hormones of an organism. Female reproductive cells are egg cells, and male reproductive cells are sperm. The male gonad, the testicle, produces sperm in the form of spermatozoa. The female gonad, the ovary, produces egg cells. Both of these gametes are haploid cells. Some hermaphroditic animals have a type of gonad called an ovotestis.

<span class="mw-page-title-main">Egg cell</span> Female reproductive cell in most anisogamous organisms

The egg cell or ovum is the female reproductive cell, or gamete, in most anisogamous organisms. The term is used when the female gamete is not capable of movement (non-motile). If the male gamete (sperm) is capable of movement, the type of sexual reproduction is also classified as oogamous. A nonmotile female gamete formed in the oogonium of some algae, fungi, oomycetes, or bryophytes is an oosphere. When fertilized, the oosphere becomes the oospore.

<span class="mw-page-title-main">Gametogenesis</span> Biological process

Gametogenesis is a biological process by which diploid or haploid precursor cells undergo cell division and differentiation to form mature haploid gametes. Depending on the biological life cycle of the organism, gametogenesis occurs by meiotic division of diploid gametocytes into various gametes, or by mitosis. For example, plants produce gametes through mitosis in gametophytes. The gametophytes grow from haploid spores after sporic meiosis. The existence of a multicellular, haploid phase in the life cycle between meiosis and gametogenesis is also referred to as alternation of generations.

<span class="mw-page-title-main">Ovule</span> Female plant reproductive structure

In seed plants, the ovule is the structure that gives rise to and contains the female reproductive cells. It consists of three parts: the integument, forming its outer layer, the nucellus, and the female gametophyte in its center. The female gametophyte — specifically termed a megagametophyte— is also called the embryo sac in angiosperms. The megagametophyte produces an egg cell for the purpose of fertilization. The ovule is a small structure present in the ovary. It is attached to the placenta by a stalk called a funicle. The funicle provides nourishment to the ovule.On the basis of the relative position of micropyle, body of the ovule, chalaza and funicle, there are six types of ovules . (a) Orthotropous ovule - the micropyle, chalaza and funicle all lie in the same straight line, this is the most primitive type of ovule . Eg: Piper, polygonum and cycas.

<span class="mw-page-title-main">Female reproductive system</span> Reproductive system of human females

The female reproductive system is made up of the internal and external sex organs that function in the reproduction of new offspring. The human female reproductive system is immature at birth and develops to maturity at puberty to be able to produce gametes, and to carry a fetus to full term. The internal sex organs are the vagina, uterus, fallopian tubes, and ovaries. The female reproductive tract includes the vagina, uterus, and fallopian tubes and is prone to infections. The vagina allows for sexual intercourse and childbirth, and is connected to the uterus at the cervix. The uterus or womb accommodates the embryo, which develops into the fetus. The uterus also produces secretions, which help the transit of sperm to the fallopian tubes, where sperm fertilize ova produced by the ovaries. The external sex organs are also known as the genitals and these are the organs of the vulva including the labia, clitoris, and vaginal opening.

<span class="mw-page-title-main">Plant reproductive morphology</span> Parts of plant enabling sexual reproduction

Plant reproductive morphology is the study of the physical form and structure of those parts of plants directly or indirectly concerned with sexual reproduction.

<span class="mw-page-title-main">Male reproductive system</span> Reproductive system of the human male

The male reproductive system consists of a number of sex organs that play a role in the process of human reproduction. These organs are located on the outside of the body, and within the pelvis.

<span class="mw-page-title-main">Gynoecium</span> Female organs of a flower

Gynoecium is most commonly used as a collective term for the parts of a flower that produce ovules and ultimately develop into the fruit and seeds. The gynoecium is the innermost whorl of a flower; it consists of pistils and is typically surrounded by the pollen-producing reproductive organs, the stamens, collectively called the androecium. The gynoecium is often referred to as the "female" portion of the flower, although rather than directly producing female gametes, the gynoecium produces megaspores, each of which develops into a female gametophyte which then produces egg cells.

<span class="mw-page-title-main">Double fertilization</span> Complex fertilization mechanism of flowering plants

Double fertilization or Double fertilisation is a complex fertilization mechanism of flowering plants (angiosperms). This process involves the joining of a female gametophyte with two male gametes (sperm). It begins when a pollen grain adheres to the stigma of the carpel, the female reproductive structure of a flower. The pollen grain then takes in moisture and begins to germinate, forming a pollen tube that extends down toward the ovary through the style. The tip of the pollen tube then enters the ovary and penetrates through the micropyle opening in the ovule. The pollen tube proceeds to release the two sperm in the embryo sacs.

<span class="mw-page-title-main">Gametangium</span> Multicellular sex organs in plant life

A gametangium is an organ or cell in which gametes are produced that is found in many multicellular protists, algae, fungi, and the gametophytes of plants. In contrast to gametogenesis in animals, a gametangium is a haploid structure and formation of gametes does not involve meiosis.

Plant reproduction is the production of new offspring in plants, which can be accomplished by sexual or asexual reproduction. Sexual reproduction produces offspring by the fusion of gametes, resulting in offspring genetically different from either parent. Asexual reproduction produces new individuals without the fusion of gametes, resulting in clonal plants that are genetically identical to the parent plant and each other, unless mutations occur.

<span class="mw-page-title-main">Sexual differentiation in humans</span> Process of development of sex differences in humans

Sexual differentiation in humans is the process of development of sex differences in humans. It is defined as the development of phenotypic structures consequent to the action of hormones produced following gonadal determination. Sexual differentiation includes development of different genitalia and the internal genital tracts and body hair plays a role in sex identification.

The reproductive system of an organism, also known as the genital system, is the biological system made up of all the anatomical organs involved in sexual reproduction. Many non-living substances such as fluids, hormones, and pheromones are also important accessories to the reproductive system. Unlike most organ systems, the sexes of differentiated species often have significant differences. These differences allow for a combination of genetic material between two individuals, which allows for the possibility of greater genetic fitness of the offspring.

<span class="mw-page-title-main">Sexual reproduction</span> Biological process

Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete with a single set of chromosomes combines with another gamete to produce a zygote that develops into an organism composed of cells with two sets of chromosomes (diploid). This is typical in animals, though the number of chromosome sets and how that number changes in sexual reproduction varies, especially among plants, fungi, and other eukaryotes.

<span class="mw-page-title-main">Sexual selection in Arabidopsis thaliana</span> Mode of natural selection in plants

Sexual selection in Arabidopsis thaliana is a mode of natural selection by which the flowering plant Arabidopsis thaliana selects mates to maximize reproductive success.

References

  1. 1 2 Clark, Robert K. (2005). Anatomy and Physiology: Understanding the Human Body. Jones & Bartlett Learning. p. 25. ISBN   9780763748166.
  2. Deol, Pooja Soni (2023). ANATOMY PHYSIOLOGY OF FEMALE REPRODUCTIVE SYSTEM. Blue Rose Publishers. p. 14.
  3. "Parts of a Flower". American Museum of Natural History . Archived from the original on 19 March 2023. Retrieved 19 March 2023.
  4. Chisholm, Hugh, ed. (1911). "Pollination"  . Encyclopædia Britannica . Vol. 22 (11th ed.). Cambridge University Press. pp. 2–5.
  5. "Mosses and Ferns". Biology.clc.uc.edu. 16 March 2001. Archived from the original on 28 July 2012. Retrieved 1 August 2012.
  6. "Flowering Plant Reproduction". Emc.maricopa.edu. 18 May 2010. Archived from the original on 8 October 2012. Retrieved 1 August 2012.
  7. Chisholm, Hugh, ed. (1911). "Reproductive System"  . Encyclopædia Britannica . Vol. 23 (11th ed.). Cambridge University Press.
  8. Eberhard, W.G., 1985. Sexual Selection and Animal Genitalia. Harvard University Press
  9. Schmidt-Rhaesa, Andreas (30 August 2007). The Evolution of Organ Systems. Oxford University Press. p. 252. ISBN   978-0-19-856668-7.
  10. switze, International Conference on Comparative Physiology 1992 Crans; Bassau, Short & (4 August 1994). The Differences Between the Sexes. Cambridge University Press. p. 54. ISBN   978-0-521-44878-9.{{cite book}}: CS1 maint: numeric names: authors list (link)
  11. Langerhans, R. Brian; Anderson, Christopher M.; Heinen-Kay, Justa L. (6 September 2016). "Causes and Consequences of Genital Evolution". Integrative and Comparative Biology. 56 (4): 741–751. doi: 10.1093/icb/icw101 . ISSN   1540-7063. PMID   27600556.
  12. Simmons, Leigh W. (2014). "Sexual selection and genital evolution". Austral Entomology. 53 (1): 1–17. doi: 10.1111/aen.12053 . ISSN   2052-1758. S2CID   53690631.
  13. Marvalee H. Wake (1992). Hyman's Comparative Vertebrate Anatomy. University of Chicago Press. p. 583. ISBN   978-0-226-87013-7.
  14. Brigitta Olsen (15 November 2009). Daphne's Dance: True Tales in the Evolution of Woman's Sexual Awareness. Brigitta Olsen. p. 9. ISBN   978-0-9842117-0-8.
  15. Anita Allen (November 2011). Unpopular Privacy: What Must We Hide?. Oxford University Press, US. p. 219. ISBN   978-0-19-514137-5.
  16. Hodges, Frederick Mansfield S.; Denniston, George C.; Milos, Marilyn Fayre (2007). Male and Female Circumcision: Medical, Legal, and Ethical Considerations in Pediatric Practice. Springer US. p. 10. ISBN   978-0-58539-937-9 . Retrieved 24 November 2023.
  17. Martin, Richard J.; Fanaroff, Avory A.; Walsh, Michele C. (2014). Fanaroff and Martin's Neonatal-Perinatal Medicine E-Book: Diseases of the Fetus and Infant. Elsevier Health Sciences. p. 1522. ISBN   978-0-32329-537-6 . Retrieved 24 November 2023.
  18. Hosken, David J., and Paula Stockley."Sexual selection and genital evolution." Archived 12 October 2017 at the Wayback Machine Trends in Ecology & Evolution 19.2 (2004): 87-93.
  19. Arnqvist, Göran. "Comparative evidence for the evolution of genitalia by sexual selection." Archived 27 January 2012 at the Wayback Machine Nature 393.6687 (1998): 784.
  20. Schilthuizen, M. 2014. Nature's Nether Regions: What the Sex Lives of Bugs, Birds, and Beasts Tell Us About Evolution, Biodiversity, and Ourselves Archived 14 June 2023 at the Wayback Machine . Penguin USA
  21. "Male reproductive behaviour of Naja oxiana (Eichwald, 1831) in captivity, with a case of unilateral hemipenile prolapse". 2018.
  22. "Page:The Works of William Harvey (part 1 of 2).djvu/283 - Wikisource, the free online library". en.wikisource.org. Archived from the original on 25 March 2023. Retrieved 25 March 2023.
  23. Purves, William K.; Sadava, David E.; Orians, Gordon H.; Heller, H. Craig (2001). Life: The Science of Biology. Macmillan. p. 176. ISBN   978-0-7167-3873-2.
  24. Pal, Nishant (6 December 2021). Plant Biology. Independently Published. ISBN   979-8-7799-0473-5. Archived from the original on 10 April 2023. Retrieved 25 March 2023.
  25. Purves, William K.; Sadava, David E.; Orians, Gordon H.; Heller, H. Craig (2001). Life: The Science of Biology. Macmillan. p. 665. ISBN   978-0-7167-3873-2.
  26. Heritage, J.; Evans, E. G. V.; Killington, R. A. (26 January 1996). Introductory Microbiology. Cambridge University Press. p. 19. ISBN   978-0-521-44977-9.
  27. Manoharachary, C.; Tilak, K. V. B. R.; Mallaiah, K. V.; Kunwar, I. K. (1 May 2016). Mycology and Microbiology (A Textbook for UG and PG Courses). Scientific Publishers. p. 328. ISBN   978-93-86102-13-3.

Further reading