Part of a series on |
Sex |
---|
Biological terms |
Sexual reproduction |
Sexuality |
Sexual system |
The XY sex-determination system is a sex-determination system present in many mammals, including humans, some insects ( Drosophila ), some snakes, some fish (guppies), and some plants ( Ginkgo tree).
In this system, the sex of an individual usually is determined by a pair of sex chromosomes. Typically, females have two of the same kind of sex chromosome (XX), and are called the homogametic sex. Males typically have two different kinds of sex chromosomes (XY), and are called the heterogametic sex. [1] In humans, the presence of the Y chromosome is responsible for triggering male development; in the absence of the Y chromosome, the fetus will undergo female development, except with various exceptions such as individuals with Swyer syndrome, that have XY chromosomes and a female phenotype, and de la Chapelle Syndrome, that have XX chromosomes and a male phenotype, however these exceptions are rare. In some instances, a seemingly normal female with a vagina, cervix, and ovaries has XY chromosomes, but the SRY gene has been shut down. [2] [3] In most species with XY sex determination, an organism must have at least one X chromosome in order to survive. [4] [5]
The XY system contrasts in several ways with the ZW sex-determination system found in birds, some insects, many reptiles, and various other animals, in which the heterogametic sex is female.
A temperature-dependent sex determination system is found in some reptiles and fish.
All animals have a set of DNA coding for genes present on chromosomes. In humans, most mammals, and some other species, two of the chromosomes, called the X chromosome and Y chromosome, code for sex. In these species, one or more genes are present on their Y chromosome that determine maleness. In this process, an X chromosome and a Y chromosome act to determine the sex of offspring, often due to genes located on the Y chromosome that code for maleness. Offspring have two sex chromosomes: an offspring with two X chromosomes (XX) will develop female characteristics, and an offspring with an X and a Y chromosome (XY) will develop male characteristics.
In most mammals, sex is determined by presence of the Y chromosome. This makes individuals with XXY and XYY karyotypes males, and individuals with X and XXX karyotypes females. [1]
In the 1930s, Alfred Jost determined that the presence of testosterone was required for Wolffian duct development in the male rabbit. [6]
SRY is a sex-determining gene on the Y chromosome in the therians (placental mammals and marsupials). [7] Non-human mammals use several genes on the Y chromosome.[ citation needed ]
Not all male-specific genes are located on the Y chromosome. The platypus, a monotreme, use five pairs of different XY chromosomes with six groups of male-linked genes, AMH being the master switch. [8]
A single gene ( SRY ) present on the Y chromosome acts as a signal to set the developmental pathway towards maleness. Presence of this gene starts off the process of virilization. This and other factors result in the sex differences in humans. [9] The cells in females, with two X chromosomes, undergo X-inactivation, in which one of the two X chromosomes is inactivated. The inactivated X chromosome remains within a cell as a Barr body.
Some species of turtles have convergently evolved XY sex determination systems, specifically those in Chelidae and Staurotypinae. [10]
Other species (including most Drosophila species) use the presence of two X chromosomes to determine femaleness: one X chromosome gives putative maleness, but the presence of Y chromosome genes is required for normal male development. In the fruit fly individuals with XY are male and individuals with XX are female; however, individuals with XXY or XXX can also be female, and individuals with X can be males. [11]
While very few species of dioecious angiosperm have XY sex determination, making up less than 5% of all species, the sheer diversity of angiosperms means that the total number of species with XY sex determination is actually quite high, estimated to be at around 13,000 species. Molecular and evolutionary studies also show that XY sex determination has evolved independently many times in upwards of 175 unique families, with a recent study suggesting its evolution has independently occurred hundreds to thousands of times. [12]
Many economically important crops are known to have an XY system of sex determination, including kiwifruit [13] , asparagus [14] , grapes [15] and date palms. [16]
In sharp contrast to angiosperms, approximately 65% of gymnosperms are dioecious. Some families which contain members that are known to have a XY system of sex determination include the cycad families Cycadaceae and Zamiaceae, Ginkgoaceae, Gnetaceae and Podocarpaceae. [17]
Whilst XY sex determination is the most familiar, since it is the system that humans use, there are a range of alternative systems found in nature. The inverse of the XY system (called ZW to distinguish it) is used in birds and many insects, in which it is the females that are heterogametic (ZW), while males are homogametic (ZZ). [18]
Many insects of the order Hymenoptera instead have a haplo-diploid system, where the females are full diploids (with all chromosomes appearing in pairs) but males are haploid (having just one copy of all chromosomes). Some other insects have the X0 sex-determination system , where just the sex-determining chromosome varies in ploidy (XX in females but X in males), while all other chromosomes appear in pairs in both sexes. [19]
In an interview for the Rediscovering Biology website, [20] researcher Eric Vilain described how the paradigm changed since the discovery of the SRY gene:
For a long time we thought that SRY would activate a cascade of male genes. It turns out that the sex determination pathway is probably more complicated and SRY may in fact inhibit some anti-male genes.
The idea is instead of having a simplistic mechanism by which you have pro-male genes going all the way to make a male, in fact there is a solid balance between pro-male genes and anti-male genes and if there is a little too much of anti-male genes, there may be a female born and if there is a little too much of pro-male genes then there will be a male born.
We [are] entering this new era in molecular biology of sex determination where it's a more subtle dosage of genes, some pro-males, some pro-females, some anti-males, some anti-females that all interplay with each other rather than a simple linear pathway of genes going one after the other, which makes it very fascinating but very complicated to study.
In an interview by Scientific American in 2007, Vilian was asked: "It sounds as if you are describing a shift from the prevailing view that female development is a default molecular pathway to active pro-male and antimale pathways. Are there also pro-female and antifemale pathways?" [21] He replied:
Modern sex determination started at the end of the 1940s—1947—when the French physiologist Alfred Jost said it's the testis that is determining sex. Having a testis determines maleness, not having a testis determines femaleness. The ovary is not sex-determining. It will not influence the development of the external genitalia. Now in 1959 when the karyotype of Klinefelter [a male who is XXY] and Turner [a female who has one X] syndromes was discovered, it became clear that in humans it was the presence or the absence of the Y chromosome that's sex determining. Because all Klinefelters that have a Y are male, whereas Turners, who have no Y, are females. So it's not a dosage or the number of X's, it's really the presence or absence of the Y. So if you combine those two paradigms, you end up having a molecular basis that's likely to be a factor, a gene, that's a testis-determining factor, and that's the sex-determining gene. So the field based on that is really oriented towards finding testis-determining factors. What we discovered, though, was not just pro-testis determining factors. There are a number of factors that are there, like WNT4, like DAX1, whose function is to counterbalance the male pathway.
In mammals, including humans, the SRY gene triggers the development of non-differentiated gonads into testes rather than ovaries. However, there are cases in which testes can develop in the absence of an SRY gene (see sex reversal). In these cases, the SOX9 gene, involved in the development of testes, can induce their development without the aid of SRY. In the absence of SRY and SOX9, no testes can develop and the path is clear for the development of ovaries. Even so, the absence of the SRY gene or the silencing of the SOX9 gene are not enough to trigger sexual differentiation of a fetus in the female direction. A recent finding suggests that ovary development and maintenance is an active process, [22] regulated by the expression of a "pro-female" gene, FOXL2. In an interview [23] for the TimesOnline edition, study co-author Robin Lovell-Badge explained the significance of the discovery:
We take it for granted that we maintain the sex we are born with, including whether we have testes or ovaries. But this work shows that the activity of a single gene, FOXL2, is all that prevents adult ovary cells turning into cells found in testes.
Looking into the genetic determinants of human sex can have wide-ranging consequences. Scientists have been studying different sex determination systems in fruit flies and animal models to attempt an understanding of how the genetics of sexual differentiation can influence biological processes like reproduction, ageing [24] and disease.
In humans and many other species of animals, the father determines the sex of the child. In the XY sex-determination system, the female-provided ovum contributes an X chromosome and the male-provided sperm contributes either an X chromosome or a Y chromosome, resulting in female (XX) or male (XY) offspring, respectively.
Hormone levels in the male parent affect the sex ratio of sperm in humans. [25] Maternal influences also impact which sperm are more likely to achieve conception.
Human ova, like those of other mammals, are covered with a thick translucent layer called the zona pellucida, which the sperm must penetrate to fertilize the egg. Once viewed simply as an impediment to fertilization, recent research indicates the zona pellucida may instead function as a sophisticated biological security system that chemically controls the entry of the sperm into the egg and protects the fertilized egg from additional sperm. [26]
Recent research indicates that human ova may produce a chemical which appears to attract sperm and influence their swimming motion. However, not all sperm are positively impacted; some appear to remain uninfluenced and some actually move away from the egg. [27]
Maternal influences may also be possible that affect sex determination in such a way as to produce fraternal twins equally weighted between one male and one female. [28]
The time at which insemination occurs during the estrus cycle has been found to affect the sex ratio of the offspring of humans, cattle, hamsters, and other mammals. [25] Hormonal and pH conditions within the female reproductive tract vary with time, and this affects the sex ratio of the sperm that reach the egg. [25]
Sex-specific mortality of embryos also occurs. [25]
Aristotle believed incorrectly that the sex of an infant is determined by how much heat a man's sperm had during insemination. He wrote:
... the semen of the male differs from the corresponding secretion of the female in that it contains a principle within itself of such a kind as to set up movements also in the embryo and to concoct thoroughly the ultimate nourishment, whereas the secretion of the female contains material alone. If, then, the male element prevails it draws the female element into itself, but if it is prevailed over it changes into the opposite or is destroyed.
Aristotle claimed in error that the male principle was the driver behind sex determination, [29] such that if the male principle was insufficiently expressed during reproduction, the fetus would develop as a female.
Nettie Stevens (working with beetles) and Edmund Beecher Wilson (working with hemiptera) are credited with independently discovering, in 1905, the chromosomal XY sex-determination system in insects: the fact that males have XY sex chromosomes and females have XX sex chromosomes. [30] [31] [32] In the early 1920s, Theophilus Painter demonstrated that sex in humans (and other mammals) was also determined by the X and Y chromosomes, and the chromosomes that make this determination are carried by the spermatozoa. [33]
The first clues to the existence of a factor that determines the development of testis in mammals came from experiments carried out by Alfred Jost, [34] who castrated embryonic rabbits in utero and noticed that they all acquired a female phenotype. [35]
In 1959, C. E. Ford and his team, in the wake of Jost's experiments, discovered [36] that the Y chromosome was needed for a fetus to develop as male when they examined patients with Turner's syndrome, who grew up as phenotypic females, and found them to be X0 (hemizygous for X and no Y). At the same time, Jacob & Strong described a case of a patient with Klinefelter syndrome (XXY), [37] which implicated the presence of a Y chromosome in development of maleness. [38]
All these observations led to a consensus that a dominant gene that determines testis development (TDF) must exist on the human Y chromosome. [38] The search for this testis-determining factor (TDF) led to Peter Goodfellow's team of scientists [39] in 1990 to discover a region of the Y chromosome that is necessary for the male sex determination, which was named SRY (sex-determining region of the Y chromosome). [38]
Sex is the biological trait that determines whether a sexually reproducing organism produces male or female gametes. During sexual reproduction, a male and a female gamete fuse to form a zygote, which develops into an offspring that inherits traits from each parent. By convention, organisms that produce smaller, more mobile gametes are called male, while organisms that produce larger, non-mobile gametes are called female. An organism that produces both types of gamete is hermaphrodite.
A sex-determination system is a biological system that determines the development of sexual characteristics in an organism. Most organisms that create their offspring using sexual reproduction have two common sexes and a few less common intersex variations.
A gonad, sex gland, or reproductive gland is a mixed gland and sex organ that produces the gametes and sex hormones of an organism. Female reproductive cells are egg cells, and male reproductive cells are sperm. The male gonad, the testicle, produces sperm in the form of spermatozoa. The female gonad, the ovary, produces egg cells. Both of these gametes are haploid cells. Some hermaphroditic animals have a type of gonad called an ovotestis.
The Y chromosome is one of two sex chromosomes in therian mammals and other organisms. Along with the X chromosome, it is part of the XY sex-determination system, in which the Y is the sex-determining chromosome because the presence of the Y chromosome causes offspring produced in sexual reproduction to be of male sex. In mammals, the Y chromosome contains the SRY gene, which triggers development of male gonads. The Y chromosome is passed only from male parents to male offspring.
Sex-determining region Y protein (SRY), or testis-determining factor (TDF), is a DNA-binding protein encoded by the SRY gene that is responsible for the initiation of male sex determination in therian mammals. SRY is an intronless sex-determining gene on the Y chromosome. Mutations in this gene lead to a range of disorders of sex development with varying effects on an individual's phenotype and genotype.
Male is the sex of an organism that produces the gamete known as sperm, which fuses with the larger female gamete, or ovum, in the process of fertilisation. A male organism cannot reproduce sexually without access to at least one ovum from a female, but some organisms can reproduce both sexually and asexually. Most male mammals, including male humans, have a Y chromosome, which codes for the production of larger amounts of testosterone to develop male reproductive organs.
The male reproductive system consists of a number of sex organs that play a role in the process of human reproduction. These organs are located on the outside of the body, and within the pelvis.
XX male syndrome, also known as de la Chapelle syndrome, is a rare condition in which an individual with a 46,XX karyotype develops a male phenotype. Synonyms for XX male syndrome include 46,XX testicular difference of sex development
Ovotesticular syndrome is a rare congenital condition where an individual is born with both ovarian and testicular tissue. It is one of the rarest DSDs, with only 500 reported cases. Commonly, one or both gonads is an ovotestis containing both types of tissue. Although it is similar in some ways to mixed gonadal dysgenesis, the conditions can be distinguished histologically.
The XO sex-determination system is a system that some species of insects, arachnids, and mammals use to determine the sex of offspring. In this system, there is only one sex chromosome, referred to as X. Males only have one X chromosome (XO), while females have two (XX). The letter O signifies the lack of a Y chromosome. Maternal gametes always contain an X chromosome, so the sex of the animals' offspring depends on whether a sex chromosome is present in the male gamete. Its sperm normally contains either one X chromosome or no sex chromosomes at all.
The ZW sex-determination system is a chromosomal system that determines the sex of offspring in birds, some fish and crustaceans such as the giant river prawn, some insects, the schistosome family of flatworms, and some reptiles, e.g. majority of snakes, lacertid lizards and monitors, including Komodo dragons. It is also present in some plants, where it has probably evolved independently on several occasions. The letters Z and W are used to distinguish this system from the XY sex-determination system. In the ZW system, females have a pair of dissimilar ZW chromosomes, and males have two similar ZZ chromosomes.
In embryology, the genital ridge is the developmental precursor to the gonads. The genital ridge initially consists mainly of mesenchyme and cells of underlying mesonephric origin. Once oogonia enter this area they attempt to associate with these somatic cells. Development proceeds and the oogonia become fully surrounded by a layer of cells.
XXYY syndrome is a sex chromosome anomaly in which males have two extra chromosomes, one X and one Y chromosome. Human cells usually contain two sex chromosomes, one from the mother and one from the father. Usually, females have two X chromosomes (XX) and males have one X and one Y chromosome (XY). The appearance of at least one Y chromosome with a properly functioning SRY gene makes a male. Therefore, humans with XXYY are genotypically male. Males with XXYY syndrome have 48 chromosomes instead of the typical 46. This is why XXYY syndrome is sometimes written as 48, XXYY syndrome or 48, XXYY. It affects an estimated one in every 18,000–40,000 male births.
Gonadal dysgenesis is classified as any congenital developmental disorder of the reproductive system characterized by a progressive loss of primordial germ cells on the developing gonads of an embryo. One type of gonadal dysgenesis is the development of functionless, fibrous tissue, termed streak gonads, instead of reproductive tissue. Streak gonads are a form of aplasia, resulting in hormonal failure that manifests as sexual infantism and infertility, with no initiation of puberty and secondary sex characteristics.
Sex chromosomes are chromosomes that carry the genes that determine the sex of an individual. The human sex chromosomes are a typical pair of mammal allosomes. They differ from autosomes in form, size, and behavior. Whereas autosomes occur in homologous pairs whose members have the same form in a diploid cell, members of an allosome pair may differ from one another.
Sexual differentiation in humans is the process of development of sex differences in humans. It is defined as the development of phenotypic structures consequent to the action of hormones produced following gonadal determination. Sexual differentiation includes development of different genitalia and the internal genital tracts and body hair plays a role in sex identification.
Transcription factor SOX-9 is a protein that in humans is encoded by the SOX9 gene.
Transcription factor SOX-3 is a protein that in humans is encoded by the SOX3 gene. This gene encodes a member of the SOX family of transcription factors involved in the regulation of embryonic brain development and in determination of cell fate. The encoded protein acts as a transcriptional activator.
Sex reversal is a biological process whereby the pathway directed towards the already determined-sex fate is flipped towards the opposite sex, creating a discordance between the primary sex fate and the sex phenotype expressed. The process of sex reversal occurs during embryonic development or before gonad differentiation. In GSD species, sex reversal means that the sexual phenotype is discordant with the genetic/chromosomal sex. In TSD species, sex reversal means that the temperature/conditions that usually trigger the differentiation towards one sexual phenotype are producing the opposite sexual phenotype.
Four Core Genotypes (FCG) mice are laboratory mice produced by genetic engineering that allow biomedical researchers to determine if a sex difference in phenotype is caused by effects of gonadal hormones or sex chromosome genes. The four genotypes include XX and XY mice with ovaries, and XX and XY mice with testes. The comparison of XX and XY mice with the same type of gonad reveals sex differences in phenotypes that are caused by sex chromosome genes. The comparison of mice with different gonads but the same sex chromosomes reveals sex differences in phenotypes that are caused by gonadal hormones.