FOXL2

Last updated
FOXL2
Identifiers
Aliases FOXL2 , BPES, BPES1, PFRK, PINTO, POF3, forkhead box L2
External IDs OMIM: 605597 MGI: 1349428 HomoloGene: 74992 GeneCards: FOXL2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_023067

NM_012020

RefSeq (protein)

NP_075555

NP_036150

Location (UCSC) Chr 3: 138.94 – 138.95 Mb Chr 9: 98.84 – 98.84 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Forkhead box protein L2 is a protein that in humans is encoded by the FOXL2 gene. [5] [6]

Contents

Function

FOXL2 (OMIM 605597) is a transcription factor belonging to the forkhead box (FOX) superfamily, characterized by the forkhead box/winged-helix DNA-binding domain. FOXL2 plays an important role in ovarian development and function. [6] In postnatal ovaries FOXL2 regulates granulosa cell differentiation and supports the growth of the pre-ovulatory follicles during adult life. [7] In addition, the FOXL2 protein will prevent the formation of testes by suppressing expression of SOX9. [8] In mice, FOXL2 is also expressed in pituitary cells [9] where it is required for FSH expression. [10]

Regulation

FOXL2 has several post-translational modifications that modulate its stability, subcellular localization and pro-apoptotic activity. [11] By a yeast-two-hybrid screening, 10 novel protein partners of FOXL2 were discovered. The interactions were confirmed by co-immunoprecipitation experiments between FOXL2 and CXXC4 (IDAX), CXXC5 (RINF/WID), CREM, GMEB1 (P96PIF), NR2C1 (TR2), SP100, RPLP1, BAF (BANF1), XRCC6 (KU70) and SIRT1. [12]

Clinical significance

Sex determination

FOXL2 is involved in sex determination. FOXL2 knockout in mature mouse ovaries appears to cause the ovary's somatic cells to transdifferentiate to the equivalent cell types ordinarily found in the testes. [13] Polled Intersex Syndrome in goats is caused by a biallelic loss-of-function in FOXL2 transcription and leads to in utero female-to-male sex-reversal. [14]

Eyebrow thickness

Several SNPs (Single Variant Polymorphisms) in the genomic region 3q23 overlapping the forkhead box L2 (FOXL2) were found associated with eyebrow thickness. In Europeans, East Asians, and South Asians, the derived allele is above ~90% frequency, and in Africans, it is above ~75%. Native Americans, particularly Peruvians, have a relatively high frequency of the homozygous ancestral allele, which significantly decreases eyebrow thickness. All primates and archaic humans share the ancestral allele. [15]

Blepharophimosis–ptosis–epicanthus inversus syndrome

Mutations in this gene are a cause of blepharophimosis, ptosis, epicanthus inversus syndrome and/or premature ovarian failure (POF) 3. [6] Predicting the occurrence of POF based on the nature of the missense mutations in FOXL2 was a medical challenge. However, a correlation between the transcriptional activity of FOXL2 variants and the type of BPES was found. [16] Moreover, by studying the effects of natural and artificial mutations in the forkhead domain of FOXL2, a clear correlation between the orientation of amino-acid side chains in the DNA-binding domain and transcriptional activity is founded, providing the first (in silico) predictive tool of the effects of FOXL2 missense mutations. [17]

Adult granulosa cell tumors

A missense mutation in the FOXL2 gene, C134W, is typically found in adult granulosa cell tumors but not in other ovarian cancers nor in juvenile granulosa cell tumors. [7]

Endometriosis

In addition to ovarian expression of FOXL2, there have been recent studies to suggest that overexpression of FOXL2 has been implicated in endometriosis in addition to activin A. [18]

Other deregulations

One study has found that FOXL2 is required for SF-1-induced ovarian AMH regulation by interactions between FOXL2 protein and SF-1; a mutated FOXL2 could not interact with SF-1 normally and thus could not regulate ovarian AMH as normal. [19]

In a knockout study in mice, the granulosa cells of the ovaries failed to undergo the squamous-to-cuboidal transition, which led to the arrest of folliculogenesis. [20]

See also

Related Research Articles

<span class="mw-page-title-main">Granulosa cell tumour</span> Medical condition

Granulosa cell tumours are tumours that arise from granulosa cells. They are estrogen secreting tumours and present as large, complex, ovarian masses. These tumours are part of the sex cord–gonadal stromal tumour or non-epithelial group of tumours. Although granulosa cells normally occur only in the ovary, granulosa cell tumours occur in both ovaries and testicles. These tumours should be considered malignant and treated in the same way as other malignant tumours of ovary. The ovarian disease has two forms, juvenile and adult, both characterized by indolent growth, and therefore has high recovery rates. The staging system for these tumours is the same as for epithelial tumours and most present as stage I. The peak age at which they occur is 50–55 years, but they may occur at any age.

<span class="mw-page-title-main">Anti-Müllerian hormone</span> Mammalian protein found in humans

Anti-Müllerian hormone (AMH), also known as Müllerian-inhibiting hormone (MIH), is a glycoprotein hormone structurally related to inhibin and activin from the transforming growth factor beta superfamily, whose key roles are in growth differentiation and folliculogenesis. In humans, it is encoded by the AMH gene, on chromosome 19p13.3, while its receptor is encoded by the AMHR2 gene on chromosome 12.

<span class="mw-page-title-main">FOXP3</span> Immune response protein

FOXP3, also known as scurfin, is a protein involved in immune system responses. A member of the FOX protein family, FOXP3 appears to function as a master regulator of the regulatory pathway in the development and function of regulatory T cells. Regulatory T cells generally turn the immune response down. In cancer, an excess of regulatory T cell activity can prevent the immune system from destroying cancer cells. In autoimmune disease, a deficiency of regulatory T cell activity can allow other autoimmune cells to attack the body's own tissues.

<span class="mw-page-title-main">Growth differentiation factor-9</span> Protein-coding gene in the species Homo sapiens

Growth/differentiation factor 9 is a protein that in humans is encoded by the GDF9 gene.

<span class="mw-page-title-main">Follicular atresia</span>

Follicular atresia refers to the process in which a follicle fails to develop, thus preventing it from ovulating and releasing an egg. It is a normal, naturally occurring progression that occurs as mammalian ovaries age. Approximately 1% of mammalian follicles in ovaries undergo ovulation and the remaining 99% of follicles go through follicular atresia as they cycle through the growth phases. In summary, follicular atresia is a process that leads to the follicular loss and loss of oocytes, and any disturbance or loss of functionality of this process can lead to many other conditions.

Primary ovarian insufficiency (POI), also called premature ovarian insufficiency, premature menopause, and premature ovarian failure, is the partial or total loss of reproductive and hormonal function of the ovaries before age 40 because of follicular dysfunction or early loss of eggs. POI can be seen as part of a continuum of changes leading to menopause that differ from age-appropriate menopause in the age of onset, degree of symptoms, and sporadic return to normal ovarian function. POI affects approximately 1 in 10,000 women under age 20, 1 in 1,000 women under age 30, and 1 in 100 of those under age 40. A medical triad for the diagnosis is amenorrhea, hypergonadotropism, and hypoestrogenism.

<span class="mw-page-title-main">Bone morphogenetic protein 15</span> Protein-coding gene in humans

Bone morphogenetic protein 15 (BMP-15) is a protein that in humans is encoded by the BMP15 gene. It is involved in folliculogenesis, the process in which primordial follicles develop into pre-ovulatory follicles.

XX gonadal dysgenesis is a type of female hypogonadism in which the ovaries do not function to induce puberty in an otherwise normal girl whose karyotype is found to be 46,XX. With nonfunctional streak ovaries, she is low in estrogen levels (hypoestrogenic) and has high levels of FSH and LH. Estrogen and progesterone therapy is usually then commenced. Some cases are considered a severe version of premature ovarian failure where the ovaries fail before puberty.

<span class="mw-page-title-main">FOXC2</span> Protein-coding gene in the species Homo sapiens

Forkhead box protein C2 (FOXC2) also known as forkhead-related protein FKHL14 (FKHL14), transcription factor FKH-14, or mesenchyme fork head protein 1 (MFH1) is a protein that in humans is encoded by the FOXC2 gene. FOXC2 is a member of the fork head box (FOX) family of transcription factors.

<span class="mw-page-title-main">Blepharophimosis</span> Congenital anomaly in which the eye openings are small

Blepharophimosis is a congenital anomaly in which the eyelids are underdeveloped such that they cannot open as far as usual and permanently cover part of the eyes. Both the vertical and horizontal palpebral fissures are shortened; the eyes also appear spaced more widely apart as a result, known as telecanthus.

<span class="mw-page-title-main">Forkhead box C1</span> Protein-coding gene in the species Homo sapiens

Forkhead box C1, also known as FOXC1, is a protein which in humans is encoded by the FOXC1 gene.

<i>TBX5</i> (gene) Protein-coding gene that affects limb development and heart and bone function

T-box transcription factor TBX5, is a protein that in humans is encoded by the TBX5 gene. Abnormalities in the TBX5 gene can result in altered limb development, Holt-Oram syndrome, Tetra-amelia syndrome, and cardiac and skeletal problems.

<span class="mw-page-title-main">FOXE1</span> Mammalian protein found in Homo sapiens

Forkhead box protein E1 is a protein that in humans is encoded by the FOXE1 gene.

<span class="mw-page-title-main">MRPS22</span> Protein-coding gene in the species Homo sapiens

28S ribosomal protein S22, mitochondrial is a protein that in humans is encoded by the MRPS22 gene.

<span class="mw-page-title-main">SOX14</span> Protein-coding gene in the species Homo sapiens

Transcription factor SOX-14 is a protein that in humans is encoded by the SOX14 gene.

<span class="mw-page-title-main">FOXD3</span> Protein-coding gene in the species Homo sapiens

Forkhead box D3 also known as FOXD3 is a forkhead protein that in humans is encoded by the FOXD3 gene.

<span class="mw-page-title-main">FIGLA</span> Protein-coding gene in the species Homo sapiens

Folliculogenesis-specific basic helix-loop-helix, also known as factor in the germline alpha (FIGalpha) or transcription factor FIGa, is a protein that in humans is encoded by the FIGLA gene. The FIGLA gene is a germ cell-specific transcription factor preferentially expressed in oocytes that can be found on human chromosome 2p13.3.

<span class="mw-page-title-main">FOXE3</span> Protein-coding gene in the species Homo sapiens

Forkhead box protein E3 (FOXE3) also known as forkhead-related transcription factor 8 (FREAC-8) is a protein that in humans is encoded by the FOXE3 gene located on the short arm of chromosome 1.

<span class="mw-page-title-main">Blepharophimosis, ptosis, epicanthus inversus syndrome</span> Rare genetic condition involving underdeveloped eyelids

Blepharophimosis, ptosis, epicanthus inversus syndrome (BPES) is a rare medical anomaly characterized by the conditions it is named after: blepharophimosis, ptosis and epicanthus inversus. There are two types; type 1 is distinguished from type 2 by including the symptom of premature ovarian insufficiency (POI) in females, which causes menopausal symptoms and infertility in patients as young as 15 years old.

Ovarian follicle activation can be defined as primordial follicles in the ovary moving from a quiescent (inactive) to a growing phase. The primordial follicle in the ovary is what makes up the “pool” of follicles that will be induced to enter growth and developmental changes that change them into pre-ovulatory follicles, ready to be released during ovulation. The process of development from a primordial follicle to a pre-ovulatory follicle is called folliculogenesis.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000183770 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000050397 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. de Die-Smulders CE, Engelen JJ, Donk JM, Fryns JP (October 1991). "Further evidence for the location of the BPES gene at 3q2". Journal of Medical Genetics. 28 (10): 725. doi:10.1136/jmg.28.10.725. PMC   1017067 . PMID   1941972.
  6. 1 2 3 "Entrez Gene: FOXL2 forkhead box L2".
  7. 1 2 Leung DT, Fuller PJ, Chu S (March 2016). "Impact of FOXL2 mutations on signaling in ovarian granulosa cell tumors". The International Journal of Biochemistry & Cell Biology. 72: 51–4. doi:10.1016/j.biocel.2016.01.003. PMID   26791928.
  8. Yang YJ, Wang Y, Li Z, Zhou L, Gui JF (April 2017). "Sequential, Divergent, and Cooperative Requirements of Foxl2a and Foxl2b in Ovary Development and Maintenance of Zebrafish". Genetics. 205 (4): 1551–1572. doi:10.1534/genetics.116.199133. PMC   5378113 . PMID   28193729.
  9. Ellsworth BS, Egashira N, Haller JL, Butts DL, Cocquet J, Clay CM, et al. (November 2006). "FOXL2 in the pituitary: molecular, genetic, and developmental analysis". Mol Endocrinol. 20 (11): 2796–805. doi: 10.1210/me.2005-0303 . PMID   16840539.
  10. Justice NJ, Blount AL, Pelosi E, Schlessinger D, Vale W, Bilezikjian LM (August 2011). "Impaired FSHbeta expression in the pituitaries of Foxl2 mutant animals". Mol Endocrinol. 25 (8): 1404–15. doi:10.1210/me.2011-0093. PMC   3146251 . PMID   21700720.
  11. Georges A, Benayoun BA, Marongiu M, Dipietromaria A, L'Hôte D, Todeschini AL, et al. (Oct 2011). "SUMOylation of the Forkhead transcription factor FOXL2 promotes its stabilization/activation through transient recruitment to PML bodies". PLOS ONE. 6 (10): e25463. Bibcode:2011PLoSO...625463G. doi: 10.1371/journal.pone.0025463 . PMC   3192040 . PMID   22022399.
  12. L'Hôte D, Georges A, Todeschini AL, Kim JH, Benayoun BA, Bae J, et al. (July 2012). "Discovery of novel protein partners of the transcription factor FOXL2 provides insights into its physiopathological roles". Human Molecular Genetics. 21 (14): 3264–74. doi: 10.1093/hmg/dds170 . PMID   22544055.
  13. Uhlenhaut NH, Jakob S, Anlag K, Eisenberger T, Sekido R, Kress J, et al. (December 2009). "Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation". Cell. 139 (6): 1130–42. doi: 10.1016/j.cell.2009.11.021 . PMID   20005806. S2CID   14305820.*Lay summary in: Borrell B (December 10, 2009). "Ovaries reveal their inner testes". Nature News.
  14. Boulanger L, Pannetier M, Gall L, Allais-Bonnet A, Elzaiat M, Le Bourhis D, et al. (February 2014). "FOXL2 is a female sex-determining gene in the goat". Curr Biol. 24 (4): 404–8. Bibcode:2014CBio...24..404B. doi: 10.1016/j.cub.2013.12.039 . PMID   24485832. S2CID   12076748.
  15. Adhikari K, Fontanil T, Cal S, Mendoza-Revilla J, Fuentes-Guajardo M, Chacón-Duque JC, et al. (March 2016). "A genome-wide association scan in admixed Latin Americans identifies loci influencing facial and scalp hair features". Nature Communications. 7: 10815. Bibcode:2016NatCo...710815A. doi:10.1038/ncomms10815. PMC   4773514 . PMID   26926045.
  16. Dipietromaria A, Benayoun BA, Todeschini AL, Rivals I, Bazin C, Veitia RA (September 2009). "Towards a functional classification of pathogenic FOXL2 mutations using transactivation reporter systems". Human Molecular Genetics. 18 (17): 3324–33. CiteSeerX   10.1.1.615.6877 . doi:10.1093/hmg/ddp273. PMID   19515849.
  17. Todeschini AL, Dipietromaria A, L'hôte D, Boucham FZ, Georges AB, Pandaranayaka PJ, et al. (September 2011). "Mutational probing of the forkhead domain of the transcription factor FOXL2 provides insights into the pathogenicity of naturally occurring mutations". Human Molecular Genetics. 20 (17): 3376–85. doi: 10.1093/hmg/ddr244 . PMID   21632871.
  18. Governini L, Carrarelli P, Rocha AL, Leo VD, Luddi A, Arcuri F, et al. (October 2014). "FOXL2 in human endometrium: hyperexpressed in endometriosis". Reproductive Sciences. 21 (10): 1249–55. doi:10.1177/1933719114522549. PMID   24520083. S2CID   25004354.
  19. Jin H, Won M, Park SE, Lee S, Park M, Bae J (2016-07-14). "FOXL2 Is an Essential Activator of SF-1-Induced Transcriptional Regulation of Anti-Müllerian Hormone in Human Granulosa Cells". PLOS ONE. 11 (7): e0159112. Bibcode:2016PLoSO..1159112J. doi: 10.1371/journal.pone.0159112 . PMC   4944948 . PMID   27414805.
  20. Schmidt D, Ovitt CE, Anlag K, Fehsenfeld S, Gredsted L, Treier AC, et al. (February 2004). "The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance". Development. 131 (4): 933–42. doi: 10.1242/dev.00969 . PMID   14736745. S2CID   31658647.

Further reading