MESP2

Last updated
MESP2
Identifiers
Aliases MESP2 , SCDO2, bHLHc6, mesoderm posterior bHLH transcription factor 2
External IDs OMIM: 605195 MGI: 1096325 HomoloGene: 7420 GeneCards: MESP2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001039958

NM_008589

RefSeq (protein)

NP_001035047

NP_032615

Location (UCSC) Chr 15: 89.76 – 89.78 Mb Chr 7: 79.46 – 79.46 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Mesoderm posterior protein 2 (MESP2), also known as class C basic helix-loop-helix protein 6 (bHLHc6), is a protein that in humans is encoded by the MESP2 gene. [5]

Contents

Function

This gene encodes a member of the bHLH family of transcription factors and plays a key role in defining the rostrocaudal patterning of somites via interactions with multiple Notch signaling pathways. This gene is expressed in the anterior presomitic mesoderm and is downregulated immediately after the formation of segmented somites. This gene also plays a role in the formation of epithelial somitic mesoderm and cardiac mesoderm. [5] In zebrafish, the homolog mesp-b is critical for dermomyotome development. [6]

Clinical significance

Mutations in the MESP2 gene cause autosomal recessive Spondylocostal dysostosis type 2. [7]

Related Research Articles

<span class="mw-page-title-main">Somite</span> Each of several blocks of mesoderm that flank the neural tube on either side in embryogenesis

The somites are a set of bilaterally paired blocks of paraxial mesoderm that form in the embryonic stage of somitogenesis, along the head-to-tail axis in segmented animals. In vertebrates, somites subdivide into the dermatomes, myotomes, sclerotomes and syndetomes that give rise to the vertebrae of the vertebral column, rib cage, part of the occipital bone, skeletal muscle, cartilage, tendons, and skin.

<span class="mw-page-title-main">Somitogenesis</span>

Somitogenesis is the process by which somites form. Somites are bilaterally paired blocks of paraxial mesoderm that form along the anterior-posterior axis of the developing embryo in segmented animals. In vertebrates, somites give rise to skeletal muscle, cartilage, tendons, endothelium, and dermis.

<span class="mw-page-title-main">Intermediate mesoderm</span> Layer of cells in mammalian embryos

Intermediate mesoderm or intermediate mesenchyme is a narrow section of the mesoderm located between the paraxial mesoderm and the lateral plate of the developing embryo. The intermediate mesoderm develops into vital parts of the urogenital system.

<span class="mw-page-title-main">Noggin (protein)</span> Protein-coding gene in the species Homo sapiens

Noggin, also known as NOG, is a protein that is involved in the development of many body tissues, including nerve tissue, muscles, and bones. In humans, noggin is encoded by the NOG gene. The amino acid sequence of human noggin is highly homologous to that of rat, mouse, and Xenopus.

<span class="mw-page-title-main">Spondylocostal dysostosis</span> Axial skeleton growth disorder

Spondylocostal dysostosis, also known as Jarcho-Levin syndrome (JLS), is a rare, heritable axial skeleton growth disorder. It is characterized by widespread and sometimes severe malformations of the vertebral column and ribs, shortened thorax, and moderate to severe scoliosis and kyphosis. Individuals with Jarcho-Levin typically appear to have a short trunk and neck, with arms appearing relatively long in comparison, and a slightly protuberant abdomen. Severely affected individuals may have life-threatening pulmonary complications due to deformities of the thorax. The syndrome was first described by Saul Jarcho and Paul M. Levin at Johns Hopkins University in 1938.

<span class="mw-page-title-main">NEUROD1</span> Protein-coding gene in the species Homo sapiens

Neurogenic differentiation 1 (Neurod1), also called β2, is a transcription factor of the NeuroD-type. It is encoded by the human gene NEUROD1.

<span class="mw-page-title-main">Forkhead box C1</span> Protein-coding gene in the species Homo sapiens

Forkhead box C1, also known as FOXC1, is a protein which in humans is encoded by the FOXC1 gene.

<span class="mw-page-title-main">HEY1</span> Protein-coding gene in the species Homo sapiens

Hairy/enhancer-of-split related with YRPW motif protein 1 is a protein that in humans is encoded by the HEY1 gene.

<span class="mw-page-title-main">HOXD1</span> Protein-coding gene in the species Homo sapiens

Homeobox protein Hox-D1 is a protein that in humans is encoded by the HOXD1 gene.

<span class="mw-page-title-main">OSR1</span> Protein-coding gene in the species Homo sapiens

Protein odd-skipped-related 1 is a transcription factor that in humans is encoded by the OSR1 gene. The OSR1 and OSR2 transcription factors participate in the normal development of body parts such as the kidney.

<span class="mw-page-title-main">Class A basic helix-loop-helix protein 15</span> Protein-coding gene in the species Homo sapiens

Class A basic helix-loop-helix protein 15 (bHLHa15) also known as class B basic helix-loop-helix protein 8 (bHLHb8) or muscle, intestine and stomach expression 1 (MIST-1) is a protein that in humans is encoded by the BHLHA15 gene.

<span class="mw-page-title-main">LFNG</span> Protein-coding gene in the species Homo sapiens

Beta-1,3-N-acetylglucosaminyltransferase lunatic fringe, (Lunatic Fringe), is a protein encoded in humans by the LFNG gene.

<span class="mw-page-title-main">DLL3</span> Protein-coding gene in the species Homo sapiens

Delta-like 3 (Drosophila), also known as DLL3, is a protein which in humans is encoded by the DLL3 gene. Two transcript variants encoding distinct isoforms have been identified for this gene.

<span class="mw-page-title-main">HEYL</span> Protein-coding gene in the species Homo sapiens

Hairy/enhancer-of-split related with YRPW motif-like protein is a protein that in humans is encoded by the HEYL gene.

<span class="mw-page-title-main">ZG16</span>

Zymogen Granule Protein 16 is a protein that is encoded by the ZG16 gene. Other common names include hZG16, FLJ43571, FLJ92276, secretory lectin ZG16, jacalin-like lectin domain containing, JCLN, JCLN1, MGC183567, MGC34820, ZG16A, zymogen granule membrane protein 16, zymogen granule protein 16 homolog, and zymogen granule protein. The gene is located on Chromosome 16: 29,778,256-29,782,973. The gene obtains one transcript and 128 orthologues.

The clock and wavefront model is a model used to describe the process of somitogenesis in vertebrates. Somitogenesis is the process by which somites, blocks of mesoderm that give rise to a variety of connective tissues, are formed.

<span class="mw-page-title-main">MESP1</span> Protein-coding gene in the species Homo sapiens

Mesoderm posterior 1 homolog (mouse) is a protein that in humans is encoded by the MESP1 gene. MESP1 is a transcription factor that regulates cardiovascular progenitor specification.

<span class="mw-page-title-main">HES7 gene</span> Protein-coding gene in humans

(HES7) or bHLHb37 is protein coding mammalian gene found on chromosome 17 in humans. HES7 is a member of the Hairy and Enhancer of Split families of Basic helix-loop-helix proteins. The gene product is a transcription factor and is expressed cyclically in the presomitic mesoderm as part of the Notch signalling pathway. HES7 is involved in the segmentation of somites from the presomitic mesoderm in vertebrates. The HES7 gene is self-regulated by a negative feedback loop in which the gene product can bind to its own promoter. This causes the gene to be expressed in an oscillatory manner. The HES7 protein also represses expression of Lunatic Fringe (LFNG) thereby both directly and indirectly regulating the Notch signalling pathway. Mutations in HES7 can result in deformities of the spine, ribs and heart. Spondylocostal dysostosis is a common disease caused by mutations in the HES7 gene. The inheritance pattern of Spondylocostal dysostosis is autosomal recessive.

<span class="mw-page-title-main">TBX15</span> Human protein and coding gene

T-box transcription factor TBX15 is protein that is encoded in humans by the Tbx15 gene, mapped to Chromosome 3 in mice and Chromosome 1 in humans. Tbx15 is a transcription factor that plays a key role in embryonic development. Like other members of the T-box subfamily, Tbx15 is expressed in the notochord and primitive streak, where it assists with the formation and differentiation of the mesoderm. It is steadily downregulated after segmentation of the paraxial mesoderm.

<span class="mw-page-title-main">Kenro Kusumi</span> Genome biologist and professor at Arizona State University

Kenro Kusumi, a genome biologist and professor, Dean of Natural Sciences in The College of Liberal Arts and Sciences at Arizona State University.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000188095 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000030543 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: mesoderm posterior 2 homolog (mouse)".
  6. Windner SE, Doris RA, Ferguson CM, Nelson AC, Valentin G, Tan H, Oates AC, Wardle FC, Devoto SH (Mar 2015). "Tbx6, Mesp-b and Ripply1 regulate the onset of skeletal myogenesis in zebrafish". Development. 142 (6): 1159–68. doi:10.1242/dev.113431. PMC   4360180 . PMID   25725067.
  7. Cornier AS, Staehling-Hampton K, Delventhal KM, Saga Y, Caubet JF, Sasaki N, Ellard S, Young E, Ramirez N, Carlo SE, Torres J, Emans JB, Turnpenny PD, Pourquié O (Jun 2008). "Mutations in the MESP2 gene cause spondylothoracic dysostosis/Jarcho-Levin syndrome". American Journal of Human Genetics. 82 (6): 1334–41. doi:10.1016/j.ajhg.2008.04.014. PMC   2427230 . PMID   18485326.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.