Lymphoid enhancer-binding factor 1

Last updated
LEF1
Protein LEF1 PDB 2lef.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases LEF1 , LEF-1, TCF10, TCF1ALPHA, TCF7L3, lymphoid enhancer binding factor 1
External IDs MGI: 96770 HomoloGene: 7813 GeneCards: LEF1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001130713
NM_001130714
NM_001166119
NM_016269

RefSeq (protein)

NP_001124185
NP_001124186
NP_001159591
NP_057353
NP_057353.1

Contents

Location (UCSC) Chr 4: 108.05 – 108.17 Mb Chr 3: 130.9 – 131.02 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Lymphoid enhancer-binding factor 1 (LEF1) is a protein that in humans is encoded by the LEF1 gene. [5] It is a member of T cell factor/lymphoid enhancer factor (TCF/LEF) family.

Function

Lymphoid enhancer-binding factor-1 (LEF1) is a 48-kD nuclear protein that is expressed in pre-B and T cells. It binds to a functionally important site in the T-cell receptor-alpha (TCRA) enhancer and confers maximal enhancer activity. LEF1 belongs to a family of regulatory proteins that share homology with high mobility group protein-1 (HMG1). [6]

Clinical significance

LEF1 is highly overexpressed and associated with disease progression and poor prognosis in B-cell chronic lymphocytic leukemia [7] and other kinds of malignancies like colorectal cancer. [8] It is also a promising potential drug target. [9]

Interactions

Lymphoid enhancer-binding factor 1 has been shown to interact with:

Related Research Articles

The Wnt signaling pathways are a group of signal transduction pathways which begin with proteins that pass signals into a cell through cell surface receptors. The name Wnt is a portmanteau created from the names Wingless and Int-1. Wnt signaling pathways use either nearby cell-cell communication (paracrine) or same-cell communication (autocrine). They are highly evolutionarily conserved in animals, which means they are similar across animal species from fruit flies to humans.

<span class="mw-page-title-main">Catenin beta-1</span> Mammalian protein found in Homo sapiens

Catenin beta-1, also known as β-catenin (beta-catenin), is a protein that in humans is encoded by the CTNNB1 gene.

<span class="mw-page-title-main">Mothers against decapentaplegic homolog 2</span> Protein-coding gene in the species Homo sapiens

Mothers against decapentaplegic homolog 2 also known as SMAD family member 2 or SMAD2 is a protein that in humans is encoded by the SMAD2 gene. MAD homolog 2 belongs to the SMAD, a family of proteins similar to the gene products of the Drosophila gene 'mothers against decapentaplegic' (Mad) and the C. elegans gene Sma. SMAD proteins are signal transducers and transcriptional modulators that mediate multiple signaling pathways.

High-Mobility Group or HMG is a group of chromosomal proteins that are involved in the regulation of DNA-dependent processes such as transcription, replication, recombination, and DNA repair.

<span class="mw-page-title-main">TCF7L2</span> Protein-coding gene in humans

Transcription factor 7-like 2 , also known as TCF7L2 or TCF4, is a protein acting as a transcription factor that, in humans, is encoded by the TCF7L2 gene. The TCF7L2 gene is located on chromosome 10q25.2–q25.3, contains 19 exons. As a member of the TCF family, TCF7L2 can form a bipartite transcription factor and influence several biological pathways, including the Wnt signalling pathway.

<span class="mw-page-title-main">CTNNBIP1</span> Protein-coding gene in the species Homo sapiens

Beta-catenin-interacting protein 1 is a protein that is encoded in humans by the CTNNBIP1 gene.

<span class="mw-page-title-main">PIAS4</span> Protein-coding gene in the species Homo sapiens

E3 SUMO-protein ligase PIAS4 is one of several protein inhibitor of activated STAT (PIAS) proteins. It is also known as protein inhibitor of activated STAT protein gamma, and is an enzyme that in humans is encoded by the PIAS4 gene.

<span class="mw-page-title-main">DVL1</span> Human protein and coding gene

Segment polarity protein dishevelled homolog DVL-1 is a protein that in humans is encoded by the DVL1 gene.

<span class="mw-page-title-main">TLE1</span> Protein-coding gene in the species Homo sapiens

Transducin-like enhancer protein 1 is a protein that in humans is encoded by the TLE1 gene.

<span class="mw-page-title-main">WNT3A</span> Protein-coding gene in the species Homo sapiens

Protein Wnt-3a is a protein that in humans is encoded by the WNT3A gene.

<span class="mw-page-title-main">AXIN2</span> Protein-coding gene in the species Homo sapiens

Axin-2, also known as axin-like protein (Axil), axis inhibition protein 2 (AXIN2), or conductin, is a protein that in humans is encoded by the AXIN2 gene.

<span class="mw-page-title-main">ZBTB33</span> Protein-coding gene in the species Homo sapiens

Transcriptional regulator Kaiso is a protein that in humans is encoded by the ZBTB33 gene. This gene encodes a transcriptional regulator with bimodal DNA-binding specificity, which binds to methylated CGCG and also to the non-methylated consensus KAISO-binding site TCCTGCNA. The protein contains an N-terminal POZ/BTB domain and 3 C-terminal zinc finger motifs. It recruits the N-CoR repressor complex to promote histone deacetylation and the formation of repressive chromatin structures in target gene promoters. It may contribute to the repression of target genes of the Wnt signaling pathway, and may also activate transcription of a subset of target genes by the recruitment of catenin delta-2 (CTNND2). Its interaction with catenin delta-1 (CTNND1) inhibits binding to both methylated and non-methylated DNA. It also interacts directly with the nuclear import receptor Importin-α2, which may mediate nuclear import of this protein. Alternatively spliced transcript variants encoding the same protein have been identified.

<span class="mw-page-title-main">DVL2</span> Human protein and coding gene

Segment polarity protein dishevelled homolog DVL-2 is a protein that in humans is encoded by the DVL2 gene.

<span class="mw-page-title-main">WIF1</span> Protein-coding gene in the species Homo sapiens

Wnt inhibitory factor 1 is a protein that in humans is encoded by the WIF1 gene. WIF1 is a lipid-binding protein that binds to Wnt proteins and prevents them from triggering signalling.

<span class="mw-page-title-main">TCF7</span> Protein-coding gene in the species Homo sapiens

Transcription factor 7 is the gene that in humans encodes for the TCF1 protein.

<span class="mw-page-title-main">BCL9</span> Protein-coding gene in the species Homo sapiens

B-cell CLL/lymphoma 9 protein is a protein that in humans is encoded by the BCL9 gene.

T-cell receptor alpha locus is a protein that in humans is encoded by the TRA gene, also known as TCRA or TRA@. It contributes the alpha chain to the larger TCR protein.

<span class="mw-page-title-main">Adipogenesis</span>

Adipogenesis is the formation of adipocytes from stem cells. It involves 2 phases, determination, and terminal differentiation. Determination is mesenchymal stem cells committing to the adipocyte precursor cells, also known as lipoblasts or preadipocytes which lose the potential to differentiate to other types of cells such as chondrocytes, myocytes, and osteoblasts. Terminal differentiation is that preadipocytes differentiate into mature adipocytes. Adipocytes can arise either from preadipocytes resident in adipose tissue, or from bone-marrow derived progenitor cells that migrate to adipose tissue.

<span class="mw-page-title-main">TCF/LEF family</span> Group of genes

The TCF/LEF family is a group of genes that encode transcription factors which bind to DNA through a SOX-like high mobility group domain. They are involved in the Wnt signaling pathway, particularly during embryonic and stem-cell development, but also had been found to play a role in cancer and diabetes. TCF/LEF factors recruit the coactivator beta-catenin to enhancer elements of genes they target. They can also recruit members of the Groucho family of corepressors.

<span class="mw-page-title-main">TCF7L1</span> Protein-coding gene in the species Homo sapiens

Transcription factor 7-like 1, also known as TCF7L1, is a human gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000138795 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000027985 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Milatovich A, Travis A, Grosschedl R, Francke U (December 1991). "Gene for lymphoid enhancer-binding factor 1 (LEF1) mapped to human chromosome 4 (q23-q25) and mouse chromosome 3 near Egf". Genomics. 11 (4): 1040–1048. doi:10.1016/0888-7543(91)90030-I. PMID   1783375.
  6. "Entrez Gene: LEF1 lymphoid enhancer-binding factor 1".
  7. Erdfelder F, Hertweck M, Filipovich A, Uhrmacher S, Kreuzer KA (January 2010). "High lymphoid enhancer-binding factor-1 expression is associated with disease progression and poor prognosis in chronic lymphocytic leukemia". Hematology Reports. 2 (1): e3. doi:10.4081/hr.2010.e3. PMC   3222268 . PMID   22184516.
  8. Eskandari E, Mahjoubi F, Motalebzadeh J (December 2018). "An integrated study on TFs and miRNAs in colorectal cancer metastasis and evaluation of three co-regulated candidate genes as prognostic markers". Gene. 679: 150–159. doi:10.1016/j.gene.2018.09.003. PMID   30193961. S2CID   52172531.
  9. Gandhirajan RK, Staib PA, Minke K, Gehrke I, Plickert G, Schlösser A, et al. (April 2010). "Small molecule inhibitors of Wnt/beta-catenin/lef-1 signaling induces apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo". Neoplasia. 12 (4): 326–335. doi:10.1593/neo.91972. PMC   2847740 . PMID   20360943.
  10. Boras K, Hamel PA (January 2002). "Alx4 binding to LEF-1 regulates N-CAM promoter activity". The Journal of Biological Chemistry. 277 (2): 1120–1127. doi: 10.1074/jbc.M109912200 . PMID   11696550.
  11. Lutterbach B, Westendorf JJ, Linggi B, Isaac S, Seto E, Hiebert SW (January 2000). "A mechanism of repression by acute myeloid leukemia-1, the target of multiple chromosomal translocations in acute leukemia". The Journal of Biological Chemistry. 275 (1): 651–656. doi: 10.1074/jbc.275.1.651 . PMID   10617663.
  12. Edlund S, Lee SY, Grimsby S, Zhang S, Aspenström P, Heldin CH, Landström M (February 2005). "Interaction between Smad7 and beta-catenin: importance for transforming growth factor beta-induced apoptosis". Molecular and Cellular Biology. 25 (4): 1475–1488. doi:10.1128/MCB.25.4.1475-1488.2005. PMC   548008 . PMID   15684397.
  13. Grueneberg DA, Pablo L, Hu KQ, August P, Weng Z, Papkoff J (June 2003). "A functional screen in human cells identifies UBF2 as an RNA polymerase II transcription factor that enhances the beta-catenin signaling pathway". Molecular and Cellular Biology. 23 (11): 3936–3950. doi:10.1128/MCB.23.11.3936-3950.2003. PMC   155208 . PMID   12748295.
  14. Behrens J, von Kries JP, Kühl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W (August 1996). "Functional interaction of beta-catenin with the transcription factor LEF-1". Nature. 382 (6592): 638–642. Bibcode:1996Natur.382..638B. doi:10.1038/382638a0. PMID   8757136. S2CID   4369341.
  15. 1 2 3 Labbé E, Letamendia A, Attisano L (July 2000). "Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways". Proceedings of the National Academy of Sciences of the United States of America. 97 (15): 8358–8363. Bibcode:2000PNAS...97.8358L. doi: 10.1073/pnas.150152697 . PMC   26952 . PMID   10890911.
  16. Barolo S, Posakony JW (May 2002). "Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling". Genes & Development. Cold Spring Harbor Laboratory Press & The Genetics Society. 16 (10): 1167–1181. doi: 10.1101/gad.976502 . PMID   12023297. S2CID   14376483. p. 1170: In ... zebrafish, reporter transgenes containing the TOPFLASH promoter are expressed in certain Wnt-responsive cell types (...Dorsky et al. 2002).
  17. Hecht A, Stemmler MP (February 2003). "Identification of a promoter-specific transcriptional activation domain at the C terminus of the Wnt effector protein T-cell factor 4". The Journal of Biological Chemistry. 278 (6): 3776–3785. doi: 10.1074/jbc.M210081200 . PMID   12446687.
  18. Yasumoto K, Takeda K, Saito H, Watanabe K, Takahashi K, Shibahara S (June 2002). "Microphthalmia-associated transcription factor interacts with LEF-1, a mediator of Wnt signaling". The EMBO Journal. 21 (11): 2703–2714. doi:10.1093/emboj/21.11.2703. PMC   126018 . PMID   12032083.
  19. Sachdev S, Bruhn L, Sieber H, Pichler A, Melchior F, Grosschedl R (December 2001). "PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies". Genes & Development. 15 (23): 3088–3103. doi:10.1101/gad.944801. PMC   312834 . PMID   11731474.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.