Transcription factor GATA-4 is a protein that in humans is encoded by the GATA4 gene. [5]
This gene encodes a member of the GATA family of zinc finger transcription factors. Members of this family recognize the GATA motif which is present in the promoters of many genes. This protein is thought to regulate genes involved in embryogenesis and in myocardial differentiation and function. Mutations in this gene have been associated with cardiac septal defects as well as reproductive defects. [6] [7]
GATA4 is a critical transcription factor for proper mammalian cardiac development and essential for survival of the embryo. GATA4 works in combination with other essential cardiac transcription factors as well, such as Nkx2-5 and Tbx5. GATA4 is expressed in both embryo and adult cardiomyocytes where it functions as a transcriptional regulator for many cardiac genes, and also regulates hypertrophic growth of the heart. [8] GATA4 promotes cardiac morphogenesis, cardiomyocytes survival, and maintains cardiac function in the adult heart. [8] Mutations or defects in the GATA4 gene can lead to a variety of cardiac problems including congenital heart disease, abnormal ventral folding, and defects in the cardiac septum separating the atria and ventricles, and hypoplasia of the ventricular myocardium. [9] As seen from the abnormalities from deletion of GATA4, it is essential for cardiac formation and the survival of the embryo during fetal development. [10] GATA4 is not only important for cardiac development, but also development and function of the mammalian fetal ovary and contributes to fetal male gonadal development and mutations may lead to defects in reproductive development. GATA4 has also been discovered to have an integral role in controlling the early stages of pancreatic and hepatic development. [8]
GATA4 is regulated through the autophagy-lysosome pathway in eukaryotic cells. In cellular senescence, ATM and ATR inhibit p62, an autophagy adaptor responsible for selective autophagy of GATA4. Inhibition of p62 leads to increased GATA4 levels, resulting in NF-kB activation and subsequent SASP induction. [11] [12]
GATA4 expression during cardiac development has been shown to be essential to proper atrioventricular (AV) formation and function. [13] Endocardial cells undergo epithelial to mesenchymal transitions (EMT) into the AV cushions during development. Their proliferation and fusion leads to division of the ventricular inlet into two different passageways with two AV valves, and they are thought to be under the influence of the GATA4 transcription factor. [13] GATA4 inactivation, with GATA4-null mice, leads to down regulation of Erbb3 and altered Erk expression, two other important molecules in EMT and ventricular inlet separation. [13] This has been shown to lead to pericardial effusion and peripheral hemorrhage in E12.5 mice, which succumb due to heart failure before weaning age. [13] This data could have important implications for human medicine by suggesting that mutations with the GATA4 transcription factor could be responsible for AV cushion defects in humans with improper septal formation leading to congenital heart disease. [13]
GATA4 has been shown to interact with NKX2-5, [14] [15] [16] TBX5, [17] Serum response factor [18] [19] HAND2, [20] and HDAC2. [21]
GATA4 has also been shown to interact with Erbb3, FOG-1, and FOG-2. [13]
Mutations in this gene have been associated to cases of congenital diaphragmatic hernia. [22] Atrial septal defects, tetralogy of Fallot, and ventricular septal defects associated with GATA4 mutation were also seen in South Indian patients. [23]
GATA-binding factor 1 or GATA-1 is the founding member of the GATA family of transcription factors. This protein is widely expressed throughout vertebrate species. In humans and mice, it is encoded by the GATA1 and Gata1 genes, respectively. These genes are located on the X chromosome in both species.
GATA transcription factors are a family of transcription factors characterized by their ability to bind to the DNA sequence "GATA".
GATA2 or GATA-binding factor 2 is a transcription factor, i.e. a nuclear protein which regulates the expression of genes. It regulates many genes that are critical for the embryonic development, self-renewal, maintenance, and functionality of blood-forming, lympathic system-forming, and other tissue-forming stem cells. GATA2 is encoded by the GATA2 gene, a gene which often suffers germline and somatic mutations which lead to a wide range of familial and sporadic diseases, respectively. The gene and its product are targets for the treatment of these diseases.
Serum response factor, also known as SRF, is a transcription factor protein.
Myocyte-specific enhancer factor 2A is a protein that in humans is encoded by the MEF2A gene. MEF2A is a transcription factor in the Mef2 family. In humans it is located on chromosome 15q26. Certain mutations in MEF2A cause an autosomal dominant form of coronary artery disease and myocardial infarction.
GATA3 is a transcription factor that in humans is encoded by the GATA3 gene. Studies in animal models and humans indicate that it controls the expression of a wide range of biologically and clinically important genes.
Homeobox protein Nkx-2.5 is a protein that in humans is encoded by the NKX2-5 gene.
Transcription factor GATA-6, also known as GATA-binding factor 6 (GATA6), is protein that in humans is encoded by the GATA6 gene. The gene product preferentially binds (A/T/C)GAT(A/T)(A) of the consensus binding sequence.
T-box transcription factor TBX5, is a protein that in humans is encoded by the TBX5 gene. Abnormalities in the TBX5 gene can result in altered limb development, Holt-Oram syndrome, Tetra-amelia syndrome, and cardiac and skeletal problems.
Forkhead box protein G1 is a protein that in humans is encoded by the FOXG1 gene.
Heart- and neural crest derivatives-expressed protein 1 is a protein that in humans is encoded by the HAND1 gene.
Heart- and neural crest derivatives-expressed protein 2 is a protein that in humans is encoded by the HAND2 gene.
Ankyrin repeat domain-containing protein 1, or Cardiac ankyrin repeat protein is a protein that in humans is encoded by the ANKRD1 gene also known as CARP. CARP is highly expressed in cardiac and skeletal muscle, and is a transcription factor involved in development and under conditions of stress. CARP has been implicated in several diseases, including dilated cardiomyopathy, hypertrophic cardiomyopathy, and several skeletal muscle myopathies.
Transcription factor GATA-5 is a protein that in humans is encoded by the GATA5 gene.
Zinc finger protein ZFPM2, i.e. zinc finger protein, FOG family member 2, but also termed Friend of GATA2, Friend of GATA-2, FOG2, or FOG-2, is a protein that in humans is encoded by the ZFPM2 and in mice by the Zfpm2 gene.
Protein Jumonji is a protein that in humans is encoded by the JARID2 gene. JARID2 is a member of the alpha-ketoglutarate-dependent hydroxylase superfamily.
Krüppel-like factor 15 is a protein that in humans is encoded by the KLF15 gene in the Krüppel-like factor family. Its former designation KKLF stands for kidney-enriched Krüppel-like factor.
TBX20 (gene) is a member of the T-box family that encodes the transcription factor TBX20. Studies in mouse, human and fruitfly have shown that this gene is essential for early heart development, adult heart function and yolk sac vasculature remodeling and has been associated with congenital heart diseases. Tbx20 was also shown to be required for migration of hindbrain motor neurons and in facial neurons was proposed to be a positive regulator of the non-canonical Wnt signaling pathway.
P19 cells is an embryonic carcinoma cell line derived from an embryo-derived teratocarcinoma in mice. The cell line is pluripotent and can differentiate into cell types of all three germ layers. Also, it is the most characterized embryonic carcinoma (EC) cell line that can be induced into cardiac muscle cells and neuronal cells by different specific treatments. Indeed, exposing aggregated P19 cells to dimethyl sulfoxide (DMSO) induces differentiation into cardiac and skeletal muscle. Also, exposing P19 cells to retinoic acid (RA) can differentiate them into neuronal cells.
Small Maf proteins are basic region leucine zipper-type transcription factors that can bind to DNA and regulate gene regulation. There are three small Maf (sMaf) proteins, namely MafF, MafG, and MafK, in vertebrates. HUGO Gene Nomenclature Committee (HGNC)-approved gene names of MAFF, MAFG and MAFK are “v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog F, G, and K”, respectively.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.