CDX1

Last updated
CDX1
Identifiers
Aliases CDX1 , caudal type homeobox 1, Homeobox protein CDX-1
External IDs OMIM: 600746 MGI: 88360 HomoloGene: 1366 GeneCards: CDX1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001804

NM_009880

RefSeq (protein)

NP_001795

NP_034010

Location (UCSC) Chr 5: 150.17 – 150.18 Mb Chr 18: 61.15 – 61.17 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Homeobox protein CDX-1 is a protein in humans that is encoded by the CDX1 gene. [5] [6] CDX1 is expressed in the developing endoderm and its expression persists in the intestine throughout adulthood. [7] CDX1 protein expression varies along the intestine, with high expression in intestinal crypts and diminishing expression along intestinal villi. [8]

Contents

Function

This gene is a member of the caudal-related homeobox transcription factor family. The encoded DNA-binding protein regulates intestine-specific gene expression and enterocyte differentiation. It has been shown to induce expression of the intestinal alkaline phosphatase gene, and inhibit beta-catenin/T-cell factor transcriptional activity. [6]

CDX1 has also been shown to play an important role in embryonic epicardial development. It has been demonstrated that CDX proteins suppress cardiac differentiation in both zebrafish and mouse embryonic stem cells, but the overall mechanism for how this happens is poorly understood. [9] However, CDX1 has been shown to be transiently expressed in the embryonic heart 11.5 days post coitum (dpc). This transient expression is thought to induce epicardial epithelial-to-mesenchymal transition and thus proper cardiovascular formation. It has been shown that low-dose CDX1 induction caused enhanced migration and differentiation of epicardium-derived cells into vascular smooth muscle, where as continued high dose induction of CDX1 or CDX1 deficiency diminished the ability of these cells to migrate and differentiate into smooth muscle by the actions of TGF-β1. Furthermore, CDX1 induction also altered transcript expression of genes related to cell adhesions for EMT and angiogenesis. [10] Therefore, along with its known roles in intestinal patterning and differentiation, CDX1 is also shown to be important in epicardial development.

Related Research Articles

<span class="mw-page-title-main">HNF1A</span> Protein-coding gene in the species Homo sapiens

HNF1 homeobox A, also known as HNF1A, is a human gene on chromosome 12. It is ubiquitously expressed in many tissues and cell types. The protein encoded by this gene is a transcription factor that is highly expressed in the liver and is involved in the regulation of the expression of several liver-specific genes. Mutations in the HNF1A gene have been known to cause diabetes. The HNF1A gene also contains one of 27 SNPs associated with increased risk of coronary artery disease.

<span class="mw-page-title-main">CDX2</span> Protein-coding gene in the species Homo sapiens

Homeobox protein CDX-2 is a protein that in humans is encoded by the CDX2 gene. The CDX2 protein is a homeobox transcription factor expressed in the nuclei of intestinal epithelial cells, playing an essential role in the development and function of the digestive system. CDX2 part of the ParaHox gene cluster, a group of three highly conserved developmental genes present in most vertebrate species. Together with CDX1 and CDX4, CDX2 is one of three caudal-related genes in the human genome.

<span class="mw-page-title-main">PDX1</span> A protein involved in the pancreas and duodenum differentiation

PDX1, also known as insulin promoter factor 1, is a transcription factor in the ParaHox gene cluster. In vertebrates, Pdx1 is necessary for pancreatic development, including β-cell maturation, and duodenal differentiation. In humans this protein is encoded by the PDX1 gene, which was formerly known as IPF1. The gene was originally identified in the clawed frog Xenopus laevis and is present widely across the evolutionary diversity of bilaterian animals, although it has been lost in evolution in arthropods and nematodes. Despite the gene name being Pdx1, there is no Pdx2 gene in most animals; single-copy Pdx1 orthologs have been identified in all mammals. Coelacanth and cartilaginous fish are, so far, the only vertebrates shown to have two Pdx genes, Pdx1 and Pdx2.

<span class="mw-page-title-main">HOXA9</span> Protein-coding gene in humans

Homeobox protein Hox-A9 is a protein that in humans is encoded by the HOXA9 gene.

<span class="mw-page-title-main">HOXB7</span> Protein-coding gene in humans

Homeobox protein Hox-B7 is a protein that in humans is encoded by the HOXB7 gene.

<span class="mw-page-title-main">SOX2</span> Transcription factor gene of the SOX family

SRY -box 2, also known as SOX2, is a transcription factor that is essential for maintaining self-renewal, or pluripotency, of undifferentiated embryonic stem cells. Sox2 has a critical role in maintenance of embryonic and neural stem cells.

<span class="mw-page-title-main">Homeobox A10</span> Protein-coding gene in humans

Homeobox protein Hox-A10 is a protein that in humans is encoded by the HOXA10 gene.

<span class="mw-page-title-main">HOXB6</span> Protein-coding gene in the species Homo sapiens

Homeobox protein Hox-B6 is a protein that in humans is encoded by the HOXB6 gene.

<span class="mw-page-title-main">HOXA5</span> Protein-coding gene in humans

Homeobox protein Hox-A5 is a protein that in humans is encoded by the HOXA5 gene.

<span class="mw-page-title-main">HOXA7</span> Protein-coding gene in the species Homo sapiens

Homeobox protein Hox-A7 is a protein that in humans is encoded by the HOXA7 gene.

<span class="mw-page-title-main">HOXB9</span> Protein-coding gene in humans

Homeobox protein Hox-B9 is a protein that in humans is encoded by the HOXB9 gene.

<span class="mw-page-title-main">HOXB3</span> Protein-coding gene in the species Homo sapiens

Homeobox protein Hox-B3 is a protein that in humans is encoded by the HOXB3 gene.

<span class="mw-page-title-main">HOXA4</span> Protein-coding gene in the species Homo sapiens

Homeobox A4, also known as HOXA4, is a protein which in humans is encoded by the HOXA4 gene.

<span class="mw-page-title-main">HOXC6</span> Protein-coding gene in the species Homo sapiens

Homeobox protein Hox-C6 is a protein that in humans is encoded by the HOXC6 gene. Hox-C6 expression is highest in the fallopian tube and ovary. HoxC6 has been highly expressed in many types of cancers including prostate, breast, and esophageal squamous cell cancer.

<span class="mw-page-title-main">ATOH1</span> Protein-coding gene in the species Homo sapiens

Protein atonal homolog 1 is a protein that in humans is encoded by the ATOH1 gene.

<span class="mw-page-title-main">LMX1A</span> Protein-coding gene in the species Homo sapiens

LIM homeobox transcription factor 1, alpha, also known as LMX1A, is a protein which in humans is encoded by the LMX1A gene.

<span class="mw-page-title-main">HOXA2</span> Protein-coding gene in the species Homo sapiens

Homeobox protein Hox-A2 is a protein that in humans is encoded by the HOXA2 gene.

<span class="mw-page-title-main">NKX6-1</span> Protein-coding gene in the species Homo sapiens

Homeobox protein Nkx-6.1 is a protein that in humans is encoded by the NKX6-1 gene.

<span class="mw-page-title-main">CDX4 (gene)</span> Protein-coding gene in the species Homo sapiens

Homeobox protein CDX-4 is a protein that in humans is encoded by the CDX4 gene. This gene is a member of the caudal-related homeobox transcription factor family that also includes CDX1 and CDX2.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000113722 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000024619 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Bonner CA, Loftus SK, Wasmuth JJ (July 1995). "Isolation, characterization, and precise physical localization of human CDX1, a caudal-type homeobox gene". Genomics. 28 (2): 206–11. doi:10.1006/geno.1995.1132. PMID   8530027.
  6. 1 2 "Entrez Gene: CDX1 caudal type homeobox transcription factor 1".
  7. Grainger S, Hryniuk A, Lohnes D (2013). "Cdx1 and Cdx2 exhibit transcriptional specificity in the intestine". PLOS ONE. 8 (1): e54757. Bibcode:2013PLoSO...854757G. doi: 10.1371/journal.pone.0054757 . PMC   3559873 . PMID   23382958.
  8. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (October 2007). "Identification of stem cells in small intestine and colon by marker gene Lgr5". Nature. 449 (7165): 1003–7. Bibcode:2007Natur.449.1003B. doi:10.1038/nature06196. PMID   17934449. S2CID   4349637.
  9. Lengerke C, Wingert R, Beeretz M, Grauer M, Schmidt AG, Konantz M, Daley GQ, Davidson AJ (June 2011). "Interactions between Cdx genes and retinoic acid modulate early cardiogenesis". Developmental Biology. 354 (1): 134–42. doi:10.1016/j.ydbio.2011.03.027. PMC   3502019 . PMID   21466798.
  10. Chu M, Wang L, Wang H, Shen T, Yang Y, Sun Y, Tang N, Ni T, Zhu J, Mailman RB, Wang Y (2014). "A novel role of CDX1 in embryonic epicardial development". PLOS ONE. 9 (7): e103271. Bibcode:2014PLoSO...9j3271C. doi: 10.1371/journal.pone.0103271 . PMC   4113346 . PMID   25068460.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.