ILF3

Last updated
ILF3
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases ILF3 , CBTF, DRBF, DRBP76, MMP4, MPHOSPH4, MPP4, NF-AT-90, NF110, NF110b, NF90, NF90a, NF90b, NFAR, NFAR-1, NFAR2, TCP110, TCP80, interleukin enhancer binding factor 3, NFAR110, MPP4110, NFAR-2, NF90c, NFAR90, NF90ctv
External IDs OMIM: 603182; MGI: 1339973; HomoloGene: 7785; GeneCards: ILF3; OMA:ILF3 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001137673
NM_004516
NM_012218
NM_017620
NM_153464

Contents

RefSeq (protein)

NP_001131145
NP_004507
NP_036350
NP_060090
NP_703194

Location (UCSC) Chr 19: 10.65 – 10.69 Mb Chr 9: 21.28 – 21.32 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Interleukin enhancer-binding factor 3 is a protein that in humans is encoded by the ILF3 gene. [5] [6]

Function

Nuclear factor of activated T-cells (NFAT) is a transcription factor required for T-cell expression of interleukin 2. NFAT binds to a sequence in the IL2 enhancer known as the antigen receptor response element 2. In addition, NFAT can bind RNA and is an essential component for encapsidation and protein priming of hepatitis B viral polymerase. NFAT is a heterodimer of 45 kDa and 90 kDa proteins, the larger of which is the product of this gene. The encoded protein, which is primarily localized to ribosomes, probably regulates transcription at the level of mRNA elongation. At least three transcript variants encoding three different isoforms have been found for this gene. [7]

Interactions

ILF3 has been shown to interact with:

Small NF90/ILF3-associated RNAs (snaR) (~120 nucleotides long) and are known to interact with ILF3 double-stranded RNA-binding motifs. [17] snaR-A is abundant in human testis and has been shown to associate with ribosomes in HeLa cells. snaR-A is present in human and gorilla but not in chimpanzee. Other snaR RNAs are found in African Great Apes (including chimpanzee and bonobo). [18]

ILF2 and ILF3 have been identified as autoantigens in mice with induced lupus, [19] [20] in canine systemic rheumatic autoimmune disease, [21] and as a rare finding in humans with autoimmune disease. [22]

Related Research Articles

<span class="mw-page-title-main">Androgen receptor</span> Mammalian protein found in humans

The androgen receptor (AR), also known as NR3C4, is a type of nuclear receptor that is activated by binding any of the androgenic hormones, including testosterone and dihydrotestosterone, in the cytoplasm and then translocating into the nucleus. The androgen receptor is most closely related to the progesterone receptor, and progestins in higher dosages can block the androgen receptor.

<span class="mw-page-title-main">Protein kinase R</span> Human protein and coding gene

Protein kinase RNA-activated also known as protein kinase R (PKR), interferon-induced, double-stranded RNA-activated protein kinase, or eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2) is an enzyme that in humans is encoded by the EIF2AK2 gene on chromosome 2. PKR is a serine/tyrosine kinase that is 551 amino acids long.

<span class="mw-page-title-main">STAT1</span> Transcription factor and coding gene in humans

Signal transducer and activator of transcription 1 (STAT1) is a transcription factor which in humans is encoded by the STAT1 gene. It is a member of the STAT protein family.

<span class="mw-page-title-main">Nuclear receptor coactivator 1</span> Protein-coding gene in the species Homo sapiens

The nuclear receptor coactivator 1 (NCOA1), also called steroid receptor coactivator-1 (SRC-1), is a transcriptional coregulatory protein that contains several nuclear receptor–interacting domains and possesses intrinsic histone acetyltransferase activity. It is encoded by the gene NCOA1.

<span class="mw-page-title-main">RELA</span> Protein-coding gene in the species Homo sapiens

Transcription factor p65 also known as nuclear factor NF-kappa-B p65 subunit is a protein that in humans is encoded by the RELA gene.

<span class="mw-page-title-main">NFATC2</span> Protein-coding gene in the species Homo sapiens

Nuclear factor of activated T-cells, cytoplasmic 2 is a protein that in humans is encoded by the NFATC2 gene.

<span class="mw-page-title-main">HNRNPK</span> Human protein and coding gene

Heterogeneous nuclear ribonucleoprotein K is a protein that in humans is encoded by the HNRNPK gene. It is found in the cell nucleus that binds to pre-messenger RNA (mRNA) as a component of heterogeneous ribonucleoprotein particles. The simian homolog is known as protein H16. Both proteins bind to single-stranded DNA as well as to RNA and can stimulate the activity of RNA polymerase II, the protein responsible for most gene transcription. The relative affinities of the proteins for DNA and RNA vary with solution conditions and are inversely correlated, so that conditions promoting strong DNA binding result in weak RNA binding.

<span class="mw-page-title-main">NFATC1</span> Protein-coding gene in the species Homo sapiens

Nuclear factor of activated T-cells, cytoplasmic 1 is a protein that in humans is encoded by the NFATC1 gene.

<span class="mw-page-title-main">MAPKAPK2</span> Protein-coding gene in the species Homo sapiens

MAP kinase-activated protein kinase 2 is an enzyme that in humans is encoded by the MAPKAPK2 gene.

<span class="mw-page-title-main">TGFB1I1</span> Protein-coding gene in the species Homo sapiens

Transforming growth factor beta-1-induced transcript 1 protein is a protein that in humans is encoded by the TGFB1I1 gene. Often put together with and studied alongside TGFB1I1 is the mouse homologue HIC-5. As the name suggests, TGFB1I1 is an induced form of the larger family of TGFB1. Studies suggest TGFB1I1 plays a role in processes of cell growth, proliferation, migration, differentiation and senescence. TGFB1I1 is most localized at focal adhesion complexes of cells, although it may be found active in the cytosol, nucleus and cell membrane as well.

<span class="mw-page-title-main">GABPA</span> Protein-coding gene in the species Homo sapiens

GA-binding protein alpha chain is a protein that in humans is encoded by the GABPA gene.

<span class="mw-page-title-main">RPS6KA1</span> Enzyme

Ribosomal protein S6 kinase alpha-1 is an enzyme that in humans is encoded by the RPS6KA1 gene.

<span class="mw-page-title-main">IRAK1</span> Protein-coding gene in humans

Interleukin-1 receptor-associated kinase 1 (IRAK-1) is an enzyme in humans encoded by the IRAK1 gene. IRAK-1 plays an important role in the regulation of the expression of inflammatory genes by immune cells, such as monocytes and macrophages, which in turn help the immune system in eliminating bacteria, viruses, and other pathogens. IRAK-1 is part of the IRAK family consisting of IRAK-1, IRAK-2, IRAK-3, and IRAK-4, and is activated by inflammatory molecules released by signaling pathways during pathogenic attack. IRAK-1 is classified as a kinase enzyme, which regulates pathways in both innate and adaptive immune systems.

<span class="mw-page-title-main">EIF2S1</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 2 subunit 1 (eIF2α) is a protein that in humans is encoded by the EIF2S1 gene.

<span class="mw-page-title-main">EIF2S2</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 2 subunit 2 (eIF2β) is a protein that in humans is encoded by the EIF2S2 gene.

<span class="mw-page-title-main">ILF2</span> Protein-coding gene in the species Homo sapiens

Interleukin enhancer-binding factor 2 is a protein that in humans is encoded by the ILF2 gene.

<span class="mw-page-title-main">TARBP2</span> Protein

RISC-loading complex subunit TARBP2 is a protein that in humans is encoded by the TARBP2 gene.

<span class="mw-page-title-main">DNAJC3</span> Human protein and coding gene

DnaJ homolog subfamily C member 3 is a protein that in humans is encoded by the DNAJC3 gene.

<span class="mw-page-title-main">EIF2A</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 2A (eIF2A) is a protein that in humans is encoded by the EIF2A gene. The eIF2A protein is not to be confused with eIF2α, a subunit of the heterotrimeric eIF2 complex. Instead, eIF2A functions by a separate mechanism in eukaryotic translation.

<span class="mw-page-title-main">SNAPC4</span> Protein-coding gene in the species Homo sapiens

snRNA-activating protein complex subunit 4 is a protein that in humans is encoded by the SNAPC4 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000129351 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000032178 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Kao PN, Chen L, Brock G, Ng J, Kenny J, Smith AJ, Corthésy B (August 1994). "Cloning and expression of cyclosporin A- and FK506-sensitive nuclear factor of activated T-cells: NF45 and NF90". The Journal of Biological Chemistry. 269 (32): 20691–9. doi: 10.1016/S0021-9258(17)32048-3 . PMID   7519613.
  6. Matsumoto-Taniura N, Pirollet F, Monroe R, Gerace L, Westendorf JM (September 1996). "Identification of novel M phase phosphoproteins by expression cloning". Molecular Biology of the Cell. 7 (9): 1455–69. doi:10.1091/mbc.7.9.1455. PMC   275994 . PMID   8885239.
  7. "Entrez Gene: ILF3 interleukin enhancer binding factor 3, 90kDa".
  8. Ting NS, Kao PN, Chan DW, Lintott LG, Lees-Miller SP (January 1998). "DNA-dependent protein kinase interacts with antigen receptor response element binding proteins NF90 and NF45". The Journal of Biological Chemistry. 273 (4): 2136–45. CiteSeerX   10.1.1.615.1747 . doi: 10.1074/jbc.273.4.2136 . PMID   9442054. S2CID   8781571.
  9. 1 2 Saunders LR, Perkins DJ, Balachandran S, Michaels R, Ford R, Mayeda A, Barber GN (August 2001). "Characterization of two evolutionarily conserved, alternatively spliced nuclear phosphoproteins, NFAR-1 and -2, that function in mRNA processing and interact with the double-stranded RNA-dependent protein kinase, PKR". The Journal of Biological Chemistry. 276 (34): 32300–12. doi: 10.1074/jbc.M104207200 . PMID   11438536.
  10. Tang J, Kao PN, Herschman HR (June 2000). "Protein-arginine methyltransferase I, the predominant protein-arginine methyltransferase in cells, interacts with and is regulated by interleukin enhancer-binding factor 3". The Journal of Biological Chemistry. 275 (26): 19866–76. doi: 10.1074/jbc.M000023200 . PMID   10749851.
  11. Lee J, Bedford MT (March 2002). "PABP1 identified as an arginine methyltransferase substrate using high-density protein arrays". EMBO Reports. 3 (3): 268–73. doi:10.1093/embo-reports/kvf052. PMC   1084016 . PMID   11850402.
  12. Langland JO, Kao PN, Jacobs BL (May 1999). "Nuclear factor-90 of activated T-cells: A double-stranded RNA-binding protein and substrate for the double-stranded RNA-dependent protein kinase, PKR". Biochemistry. 38 (19): 6361–8. doi:10.1021/bi982410u. PMID   10320367.
  13. Parker LM, Fierro-Monti I, Mathews MB (August 2001). "Nuclear factor 90 is a substrate and regulator of the eukaryotic initiation factor 2 kinase double-stranded RNA-activated protein kinase". The Journal of Biological Chemistry. 276 (35): 32522–30. doi: 10.1074/jbc.M104408200 . PMID   11438540.
  14. Patel RC, Vestal DJ, Xu Z, Bandyopadhyay S, Guo W, Erme SM, Williams BR, Sen GC (July 1999). "DRBP76, a double-stranded RNA-binding nuclear protein, is phosphorylated by the interferon-induced protein kinase, PKR". The Journal of Biological Chemistry. 274 (29): 20432–7. doi: 10.1074/jbc.274.29.20432 . PMID   10400669.
  15. Brownawell AM, Macara IG (January 2002). "Exportin-5, a novel karyopherin, mediates nuclear export of double-stranded RNA binding proteins". The Journal of Cell Biology. 156 (1): 53–64. doi:10.1083/jcb.200110082. PMC   2173575 . PMID   11777942.
  16. Chu L, Su MY, Maggi LB, Lu L, Mullins C, Crosby S, Huang G, Chng WJ, Vij R, Tomasson MH (August 2012). "Multiple myeloma-associated chromosomal translocation activates orphan snoRNA ACA11 to suppress oxidative stress". The Journal of Clinical Investigation. 122 (8): 2793–806. doi:10.1172/jci63051. PMC   3408744 . PMID   22751105.
  17. Parrott AM, Mathews MB (2007). "Novel rapidly evolving hominid RNAs bind nuclear factor 90 and display tissue-restricted distribution". Nucleic Acids Research. 35 (18): 6249–58. doi:10.1093/nar/gkm668. PMC   2094060 . PMID   17855395.
  18. Parrott AM, Tsai M, Batchu P, Ryan K, Ozer HL, Tian B, Mathews MB (March 2011). "The evolution and expression of the snaR family of small non-coding RNAs". Nucleic Acids Research. 39 (4): 1485–500. doi:10.1093/nar/gkq856. PMC   3045588 . PMID   20935053.
  19. Satoh M, Shaheen VM, Kao PN, Okano T, Shaw M, Yoshida H, Richards HB, Reeves WH (December 1999). "Autoantibodies define a family of proteins with conserved double-stranded RNA-binding domains as well as DNA binding activity". The Journal of Biological Chemistry. 274 (49): 34598–604. doi: 10.1074/jbc.274.49.34598 . PMID   10574923.
  20. Kuroda Y, Ono N, Akaogi J, Nacionales DC, Yamasaki Y, Barker TT, Reeves WH, Satoh M (February 2006). "Induction of lupus-related specific autoantibodies by non-specific inflammation caused by an intraperitoneal injection of n-hexadecane in BALB/c mice". Toxicology. 218 (2–3): 186–96. Bibcode:2006Toxgy.218..186K. doi:10.1016/j.tox.2005.10.011. PMID   16309812.
  21. Bremer HD, Landegren N, Sjöberg R, Hallgren Å, Renneker S, Lattwein E, Leonard D, Eloranta ML, Rönnblom L, Nordmark G, Nilsson P, Andersson G, Lilliehöök I, Lindblad-Toh K, Kämpe O, Hansson-Hamlin H (March 2018). "ILF2 and ILF3 are autoantigens in canine systemic autoimmune disease". Scientific Reports. 8 (1): 4852. Bibcode:2018NatSR...8.4852B. doi:10.1038/s41598-018-23034-w. PMC   5859008 . PMID   29556082.
  22. Satoh M, Shaheen VM, Kao PN, Okano T, Shaw M, Yoshida H, Richards HB, Reeves WH (December 1999). "Autoantibodies define a family of proteins with conserved double-stranded RNA-binding domains as well as DNA binding activity". The Journal of Biological Chemistry. 274 (49): 34598–604. doi: 10.1074/jbc.274.49.34598 . PMID   10574923.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.