ILF3 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | ILF3 , CBTF, DRBF, DRBP76, MMP4, MPHOSPH4, MPP4, NF-AT-90, NF110, NF110b, NF90, NF90a, NF90b, NFAR, NFAR-1, NFAR2, TCP110, TCP80, interleukin enhancer binding factor 3, NFAR110, MPP4110, NFAR-2, NF90c, NFAR90, NF90ctv | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 603182; MGI: 1339973; HomoloGene: 7785; GeneCards: ILF3; OMA:ILF3 - orthologs | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Interleukin enhancer-binding factor 3 is a protein that in humans is encoded by the ILF3 gene. [5] [6]
Nuclear factor of activated T-cells (NFAT) is a transcription factor required for T-cell expression of interleukin 2. NFAT binds to a sequence in the IL2 enhancer known as the antigen receptor response element 2. In addition, NFAT can bind RNA and is an essential component for encapsidation and protein priming of hepatitis B viral polymerase. NFAT is a heterodimer of 45 kDa and 90 kDa proteins, the larger of which is the product of this gene. The encoded protein, which is primarily localized to ribosomes, probably regulates transcription at the level of mRNA elongation. At least three transcript variants encoding three different isoforms have been found for this gene. [7]
ILF3 has been shown to interact with:
Small NF90/ILF3-associated RNAs (snaR) (~120 nucleotides long) and are known to interact with ILF3 double-stranded RNA-binding motifs. [17] snaR-A is abundant in human testis and has been shown to associate with ribosomes in HeLa cells. snaR-A is present in human and gorilla but not in chimpanzee. Other snaR RNAs are found in African Great Apes (including chimpanzee and bonobo). [18]
ILF2 and ILF3 have been identified as autoantigens in mice with induced lupus, [19] [20] in canine systemic rheumatic autoimmune disease, [21] and as a rare finding in humans with autoimmune disease. [22]
The androgen receptor (AR), also known as NR3C4, is a type of nuclear receptor that is activated by binding any of the androgenic hormones, including testosterone and dihydrotestosterone, in the cytoplasm and then translocating into the nucleus. The androgen receptor is most closely related to the progesterone receptor, and progestins in higher dosages can block the androgen receptor.
Protein kinase RNA-activated also known as protein kinase R (PKR), interferon-induced, double-stranded RNA-activated protein kinase, or eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2) is an enzyme that in humans is encoded by the EIF2AK2 gene on chromosome 2. PKR is a serine/tyrosine kinase that is 551 amino acids long.
Signal transducer and activator of transcription 1 (STAT1) is a transcription factor which in humans is encoded by the STAT1 gene. It is a member of the STAT protein family.
The nuclear receptor coactivator 1 (NCOA1), also called steroid receptor coactivator-1 (SRC-1), is a transcriptional coregulatory protein that contains several nuclear receptor–interacting domains and possesses intrinsic histone acetyltransferase activity. It is encoded by the gene NCOA1.
Transcription factor p65 also known as nuclear factor NF-kappa-B p65 subunit is a protein that in humans is encoded by the RELA gene.
Nuclear factor of activated T-cells, cytoplasmic 2 is a protein that in humans is encoded by the NFATC2 gene.
Heterogeneous nuclear ribonucleoprotein K is a protein that in humans is encoded by the HNRNPK gene. It is found in the cell nucleus that binds to pre-messenger RNA (mRNA) as a component of heterogeneous ribonucleoprotein particles. The simian homolog is known as protein H16. Both proteins bind to single-stranded DNA as well as to RNA and can stimulate the activity of RNA polymerase II, the protein responsible for most gene transcription. The relative affinities of the proteins for DNA and RNA vary with solution conditions and are inversely correlated, so that conditions promoting strong DNA binding result in weak RNA binding.
Nuclear factor of activated T-cells, cytoplasmic 1 is a protein that in humans is encoded by the NFATC1 gene.
MAP kinase-activated protein kinase 2 is an enzyme that in humans is encoded by the MAPKAPK2 gene.
Transforming growth factor beta-1-induced transcript 1 protein is a protein that in humans is encoded by the TGFB1I1 gene. Often put together with and studied alongside TGFB1I1 is the mouse homologue HIC-5. As the name suggests, TGFB1I1 is an induced form of the larger family of TGFB1. Studies suggest TGFB1I1 plays a role in processes of cell growth, proliferation, migration, differentiation and senescence. TGFB1I1 is most localized at focal adhesion complexes of cells, although it may be found active in the cytosol, nucleus and cell membrane as well.
GA-binding protein alpha chain is a protein that in humans is encoded by the GABPA gene.
Ribosomal protein S6 kinase alpha-1 is an enzyme that in humans is encoded by the RPS6KA1 gene.
Interleukin-1 receptor-associated kinase 1 (IRAK-1) is an enzyme in humans encoded by the IRAK1 gene. IRAK-1 plays an important role in the regulation of the expression of inflammatory genes by immune cells, such as monocytes and macrophages, which in turn help the immune system in eliminating bacteria, viruses, and other pathogens. IRAK-1 is part of the IRAK family consisting of IRAK-1, IRAK-2, IRAK-3, and IRAK-4, and is activated by inflammatory molecules released by signaling pathways during pathogenic attack. IRAK-1 is classified as a kinase enzyme, which regulates pathways in both innate and adaptive immune systems.
Eukaryotic translation initiation factor 2 subunit 1 (eIF2α) is a protein that in humans is encoded by the EIF2S1 gene.
Eukaryotic translation initiation factor 2 subunit 2 (eIF2β) is a protein that in humans is encoded by the EIF2S2 gene.
Interleukin enhancer-binding factor 2 is a protein that in humans is encoded by the ILF2 gene.
RISC-loading complex subunit TARBP2 is a protein that in humans is encoded by the TARBP2 gene.
DnaJ homolog subfamily C member 3 is a protein that in humans is encoded by the DNAJC3 gene.
Eukaryotic translation initiation factor 2A (eIF2A) is a protein that in humans is encoded by the EIF2A gene. The eIF2A protein is not to be confused with eIF2α, a subunit of the heterotrimeric eIF2 complex. Instead, eIF2A functions by a separate mechanism in eukaryotic translation.
snRNA-activating protein complex subunit 4 is a protein that in humans is encoded by the SNAPC4 gene.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.