ERG (ETS-related gene) is an oncogene. [5] [6] [7] ERG is a member of the ETS (erythroblast transformation-specific) family of transcription factors. [8] The ERG gene encodes for a protein, also called ERG, that functions as a transcriptional regulator. Genes in the ETS family regulate embryonic development, cell proliferation, differentiation, angiogenesis, inflammation, and apoptosis.
Transcriptional regulator ERG is a nuclear protein that binds purine-rich sequences of DNA. [9] [10] Transcriptional regulator ERG is required for platelet adhesion to the subendothelium and regulates hematopoiesis. It has a DNA binding domain and a PNT (pointed) domain. [8] ERG is expressed at higher levels in early myelocytes than in mature lymphocytes (types of white blood cells). Therefore, ERG may act as a regulator of differentiation of early hematopoietic cells. [11]
The Mld2 mutation, generated through an ENU mutagenesis screen, was the first non-functional allele of Erg. Homozygous Mld2 is embryonic lethal at day 13.5. Adult mice heterozygous for the Mld2 mutation have hematopoietic stem cell defects. [12] This means that when the ERG gene was not actively transcribed and the ERG protein produced, a mouse's hematopoietic cells were unable to function properly. Since ERG is important to the ability of the hematopoietic cells to function and self-renew, there may be applications in using blood stem cells for tissue repair, transplantation and other therapeutic applications. [13]
This gene can be classified as a proto-oncogene. During chromosomal translocations that occur in cell division, ERG can accidentally get stuck onto a different chromosome than where it belongs. This is analogous to another translocation, the Philadelphia chromosome. This results in fusion gene products, which can have bad consequences for cells. Examples of these fusion gene products would be TMPRSS2-ERG and NDRG1-ERG in prostate cancer, EWS-ERG in Ewing’s sarcoma, and FUS-ERG in acute myeloid leukemia. [14] DNA binding protein ERG fuses with RNA binding proteins EWS and TLS/FUS in Ewing's sarcoma and acute myeloid leukemias respectively and function as transcriptional activators. [15] [16] ERG and its fusion proteins EWS-ERG and TLS/FUS-ERG inhibit apoptosis. [17] Morpholino splice-switching oligonucleotides have been used to induce exon 4 skipping in prostate cancer cell lines, mouse models and tissue explants, leading to anti-cancer effects, including reduction of proliferation and induction of apoptosis. [18]
ERG can fuse with TMPRSS2 protein to form an oncogenic fusion gene that is commonly found in human prostate cancer, especially in hormone-refractory prostate cancer. This suggests that ERG overexpression may contribute to development of androgen-independence in prostate cancer through disruption of androgen receptor signaling. [19] The fusion gene is critical to the progression of cancer because it inhibits the androgen receptor expression and it binds and inhibits androgen receptors already present in the cell. Essentially TMPRSS2-ERG fusion disrupts the ability of the cells to differentiate into proper prostate cells creating unregulated and unorganized tissue. [19] In 90% of prostate cancers overexpressing ERG, they also possess a fusion TMPRSS2-ERG protein, suggesting that this fusion is the predominant subtype in prostate cancer. [20]
Ewing's sarcoma is associated with chromosomal translocations, which typically results in fusion genes with transcriptional regulators. This means that the protein transcribes for with the gene could be produced in excess or under- produced resulting in unnatural activity in cells. Typically this is the first step in a cell's progression to malignancy. In about 10% of Ewing's Sarcoma cases have an EWS1-ERG fusion. [8]
In acute myeloid leukemia, the t(16;21) translocation in myeloid leukemia fuses TLS/FUS to ERG which disrupts the natural TLS/FUS RNA binding domain, and instead inserting the ERG DNA binding domain. [21]
ERG is located on chromosome 21. [6] The ERG protein is expressed at a similar level throughout the body. [8]
ERG has been shown to interact with:
An oncogene is a gene that has the potential to cause cancer. In tumor cells, these genes are often mutated, or expressed at high levels.
The Philadelphia chromosome or Philadelphia translocation (Ph) is a specific genetic abnormality in chromosome 22 of leukemia cancer cells. This chromosome is defective and unusually short because of reciprocal translocation, t(9;22)(q34;q11), of genetic material between chromosome 9 and chromosome 22, and contains a fusion gene called BCR-ABL1. This gene is the ABL1 gene of chromosome 9 juxtaposed onto the breakpoint cluster region BCR gene of chromosome 22, coding for a hybrid protein: a tyrosine kinase signaling protein that is "always on", causing the cell to divide uncontrollably by interrupting the stability of the genome and impairing various signaling pathways governing the cell cycle.
A fusion gene is a hybrid gene formed from two previously independent genes. It can occur as a result of translocation, interstitial deletion, or chromosomal inversion. Fusion genes have been found to be prevalent in all main types of human neoplasia. The identification of these fusion genes play a prominent role in being a diagnostic and prognostic marker.
Acute myeloblastic leukemia with maturation (M2) is a subtype of acute myeloid leukemia (AML).
Ewing sarcoma is a type of cancer that forms in bone or soft tissue. Symptoms may include swelling and pain at the site of the tumor, fever, and a bone fracture. The most common areas where it begins are the legs, pelvis, and chest wall. In about 25% of cases, the cancer has already spread to other parts of the body at the time of diagnosis. Complications may include a pleural effusion or paraplegia.
ETV6 protein is a transcription factor that in humans is encoded by the ETV6 gene. The ETV6 protein regulates the development and growth of diverse cell types, particularly those of hematological tissues. However, its gene, ETV6 frequently suffers various mutations that lead to an array of potentially lethal cancers, i.e., ETV6 is a clinically significant proto-oncogene in that it can fuse with other genes to drive the development and/or progression of certain cancers. However, ETV6 is also an anti-oncogene or tumor suppressor gene in that mutations in it that encode for a truncated and therefore inactive protein are also associated with certain types of cancers.
MN1 is a gene found on human chromosome 22, with gene map locus 22q12.3-qter. Its official full name is meningioma 1 because it is disrupted by a balanced translocation (4;22) in a meningioma.
Friend leukemia integration 1 transcription factor (FLI1), also known as transcription factor ERGB, is a protein that in humans is encoded by the FLI1 gene, which is a proto-oncogene.
Cyclic AMP-dependent transcription factor ATF-1 is a protein that in humans is encoded by the ATF1 gene.
Protein C-ETS2 is a protein that in humans is encoded by the ETS2 gene. The protein encoded by this gene belongs to the ETS family of transcription factors.
Transcription factor PU.1 is a protein that in humans is encoded by the SPI1 gene.
RNA-binding protein EWS is a protein that in humans is encoded by the EWSR1 gene on human chromosome 22, specifically 22q12.2. It is one of 3 proteins in the FET protein family. The q22.2 region of chromosome 22 encodes the N-terminal transactivation domain of the EWS protein and that region may become joined to one of several other chromosomes which encode various transcription factors, see and the FET protein family. The expression of a chimeric protein with the EWS transactivation domain fused to the DNA binding region of a transcription factor generates a powerful oncogenic protein causing Ewing sarcoma and other members of the Ewing family of tumors. These translocations can occur due to chromoplexy, a burst of complex chromosomal rearrangements seen in cancer cells. The normal EWS gene encodes an RNA binding protein closely related to FUS (gene) and TAF15, all of which have been associated to amyotrophic lateral sclerosis.
RNA-binding protein FUS/TLS, also known as heterogeneous nuclear ribonucleoprotein P2 is a protein that in humans is encoded by the FUS gene.
Protein SSXT is a protein that in humans is encoded by the SS18 gene.
ETS translocation variant 1 is a protein that in humans is encoded by the ETV1 gene.
Transmembrane protease, serine 2 is an enzyme that in humans is encoded by the TMPRSS2 gene. It belongs to the TMPRSS family of proteins, whose members are transmembrane proteins which have a serine protease activity. The TMPRSS2 protein is found in high concentration in the cell membranes of epithelial cells of the lung and of the prostate, but also in the heart, liver and gastrointestinal tract.
In the field of molecular biology, the ETSfamily is one of the largest families of transcription factors and is unique to animals. There are 29 genes in humans, 28 in the mouse, 10 in Caenorhabditis elegans and 9 in Drosophila. The founding member of this family was identified as a gene transduced by the leukemia virus, E26. The members of the family have been implicated in the development of different tissues as well as cancer progression.
Clonal hypereosinophilia, also termed primary hypereosinophilia or clonal eosinophilia, is a grouping of hematological disorders all of which are characterized by the development and growth of a pre-malignant or malignant population of eosinophils, a type of white blood cell that occupies the bone marrow, blood, and other tissues. This population consists of a clone of eosinophils, i.e. a group of genetically identical eosinophils derived from a sufficiently mutated ancestor cell.
EWS/FLI1 is an oncogenic protein that is pathognomonic for Ewing sarcoma. It is found in approximately 90% of all Ewing sarcoma tumors with the remaining 10% of fusions substituting one fusion partner with a closely related family member.
The FET protein family the EWSR1 protein encoded by the EWSR1 gene located at band 12.2 of the long arm of chromosome 22; 2) the FUS protein encoded by the FUS gene located at band 16 on the short arm of chromosome 16; and 3) the TAF15 protein encoded by the TAF15 gene located at band 12 on the long arm of chromosome 7 The FET in this protein family's name derives form the first letters of FUS, EWSR1, and TAF15.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.