Metastasis-associated protein MTA2 is a protein that in humans is encoded by the MTA2 gene. [5] [6]
MTA2 is the second member of the MTA family of genes. [5] [7] [8] MTA2 protein localizes in the nucleus and is a component of the nucleosome remodeling and the deacetylation complex (NuRD). [8] Similar to the founding family member MTA1, MTA2 functions as a chromatin remodeling factor and regulates gene expression. [9] [10] MTA2 is overexpressed in human cancer and its dysregulated level correlates well with cancer invasiveness and aggressive phenotypes. [11]
MTA2 was initially recognized as an MTA1 like 1 gene, named MTA1-L1, from a large scale sequencing of randomly selected clones from human cDNA libraries in 1999. [5] Clues about the role of MTA2 in gene expression came from the association of MTA2 polypeptides in the NuRD complex in a proteomic study [7] This was followed by targeted cloning of murine Mta2 in 2001. [12]
MTA2 is localized on chromosome 11q12-q13.1 in human and on 19B in mice. The 8.6-kb long human MTA2 gene contains 20 exons and seven transcripts inclusive of three protein-coding transcripts but predicted to code for two polypeptides of 688 amino acids and 495 amino acids. [13] The remaining four MTA2 transcripts are non-coding RNA transcripts ranging from 532-bp to 627-bp. The murine Mta2 consists of a 3.1-kb protein-coding transcript to code a protein of 668 amino acids, and five non-coding RNAs transcripts, ranging from 620-bp to 839-bp.
Amino acid sequence of MTA2 shares 68.2% homology with MTA1’s sequence. MTA2 domains include, a BAH (Bromo-Adjacent Homology), an ELM2 (egl-27 and MTA1 homology), a SANT domain (SWI, ADA2, N-CoR, TFIIIB-B), and a GATA-like zinc finger. [14] [15] [16] MTA2 is acetylated at lysine 152 within the BAH domain [17]
This gene encodes a protein that has been identified as a component of NuRD, a nucleosome remodeling deacetylase complex identified in the nucleus of human cells. It shows a very broad expression pattern and is strongly expressed in many tissues. It may represent one member of a small gene family that encode different but related proteins involved either directly or indirectly in transcriptional regulation. Their indirect effects on transcriptional regulation may include chromatin remodeling. [6]
MTA2 inhibits estrogen receptor-transactivation functions, and participates in the development of hormones independent of breast cancer cells. [11] The MTA2 participate in the circadian rhythm through CLOCK-BMAL1 complex. MTA2 inhibits the expression of target genes owing to its ability to interact with chromatin remodeling complexes, and modulates pathways involved in cellular functions, including invasion, apoptosis, epithelial-to-mesenchymal transition, and growth of normal and cancer cells [9] [11]
Expression of MTA2 is stimulated by Sp1 transcription factor [12] [18] and repressed by Kaiso. [19] Growth regulatory activity of MTA2 is modulated through its acetylation by histone acetylase p300 [12]. The expression of MTA2 is inhibited by the Rho GDIa in breast cancer cells [20] and by human β-defensins in colon cancer cells. [21] MicroRNAs-146a and miR-34a also regulate the levels of MTA2 mRNA through post-transcriptional mechanism. [22] [23] [24]
MTA2 deacetylates the estrogen receptor alpha and p53 and inhibits their transactivation functions. [25] [26] MTA2 represses the expression of E-cadherin in non-small-cell lung cancer cells. [27] but stimulates the expression of IL-11 in gastric cancer cells. [28] The MTA2-containing chromatin remodeling complex targets CLOCK-BMAL1 complex. [29]
MTA2 has been shown to interact with:
The 2016 version of this article was updated by an external expert under a dual publication model. The corresponding academic peer reviewed article was published in Gene and can be cited as: Rakesh Kumar, Rui-An Wang (15 May 2016). "Structure, expression and functions of MTA genes". Gene . Gene Wiki Review Series. 582 (2): 112–21. doi:10.1016/J.GENE.2016.02.012. ISSN 0378-1119. PMC 4785049 . PMID 26869315. Wikidata Q28273245. |
Histone deacetylase 1 (HDAC1) is an enzyme that in humans is encoded by the HDAC1 gene.
Chromatin remodeling is the dynamic modification of chromatin architecture to allow access of condensed genomic DNA to the regulatory transcription machinery proteins, and thereby control gene expression. Such remodeling is principally carried out by 1) covalent histone modifications by specific enzymes, e.g., histone acetyltransferases (HATs), deacetylases, methyltransferases, and kinases, and 2) ATP-dependent chromatin remodeling complexes which either move, eject or restructure nucleosomes. Besides actively regulating gene expression, dynamic remodeling of chromatin imparts an epigenetic regulatory role in several key biological processes, egg cells DNA replication and repair; apoptosis; chromosome segregation as well as development and pluripotency. Aberrations in chromatin remodeling proteins are found to be associated with human diseases, including cancer. Targeting chromatin remodeling pathways is currently evolving as a major therapeutic strategy in the treatment of several cancers.
Histone deacetylase 2 (HDAC2) is an enzyme that in humans is encoded by the HDAC2 gene. It belongs to the histone deacetylase class of enzymes responsible for the removal of acetyl groups from lysine residues at the N-terminal region of the core histones. As such, it plays an important role in gene expression by facilitating the formation of transcription repressor complexes and for this reason is often considered an important target for cancer therapy.
Paired amphipathic helix protein Sin3a is a protein that in humans is encoded by the SIN3A gene.
Histone-binding protein RBBP4 is a protein that in humans is encoded by the RBBP4 gene.
Methyl-CpG-binding domain protein 2 is a protein that in humans is encoded by the MBD2 gene.
Metastasis-associated protein MTA1 is a protein that in humans is encoded by the MTA1 gene. MTA1 is the founding member of the MTA family of genes. MTA1 is primarily localized in the nucleus but also found to be distributed in the extra-nuclear compartments. MTA1 is a component of several chromatin remodeling complexes including the nucleosome remodeling and deacetylation complex (NuRD). MTA1 regulates gene expression by functioning as a coregulator to integrate DNA-interacting factors to gene activity. MTA1 participates in physiological functions in the normal and cancer cells. MTA1 is one of the most upregulated proteins in human cancer and associates with cancer progression, aggressive phenotypes, and poor prognosis of cancer patients.
Histone deacetylase 6 is an enzyme that in humans is encoded by the HDAC6 gene. HDAC6 has emerged as a highly promising candidate to selectively inhibit as a therapeutic strategy to combat several types of cancer and neurodegenerative disorders.
Histone-binding protein RBBP7 is a protein that in humans is encoded by the RBBP7 gene.
Histone deacetylase 5 is an enzyme that in humans is encoded by the HDAC5 gene.
Histone deacetylase 9 is an enzyme that in humans is encoded by the HDAC9 gene.
Chromodomain-helicase-DNA-binding protein 3 is an enzyme that in humans is encoded by the CHD3 gene.
Methyl-CpG-binding domain protein 3 is a protein that in humans is encoded by the MBD3 gene.
Eukaryotic translation initiation factor 3 subunit A (eIF3a) is a protein that in humans is encoded by the EIF3A gene. It is one of the subunits of Eukaryotic initiation factor 3 (eIF3) a multiprotein complex playing major roles in translation initiation in eukaryotes.
Sin3A-associated protein, 30kDa, also known as SAP30, is a protein which in humans is encoded by the SAP30 gene.
Chromodomain-helicase-DNA-binding protein 4 is an enzyme that in humans is encoded by the CHD4 gene. CHD4 is the core nucleosome-remodelling component of the Nucleosome Remodelling and Deacetylase (NuRD) complex.
Sal-like protein 4(SALL4) is a transcription factor encoded by a member of the Spalt-like (SALL) gene family, SALL4. The SALL genes were identified based on their sequence homology to Spalt, which is a homeotic gene originally cloned in Drosophila melanogaster that is important for terminal trunk structure formation in embryogenesis and imaginal disc development in the larval stages. There are four human SALL proteins with structural homology and playing diverse roles in embryonic development, kidney function, and cancer. The SALL4 gene encodes at least three isoforms, termed A, B, and C, through alternative splicing, with the A and B forms being the most studied. SALL4 can alter gene expression changes through its interaction with many co-factors and epigenetic complexes. It is also known as a key embryonic stem cell (ESC) factor.
Metastasis-associated protein MTA3 is a protein that in humans is encoded by the MTA3 gene. MTA3 protein localizes in the nucleus as well as in other cellular compartments MTA3 is a component of the nucleosome remodeling and deacetylate (NuRD) complex and participates in gene expression. The expression pattern of MTA3 is opposite to that of MTA1 and MTA2 during mammary gland tumorigenesis. However, MTA3 is also overexpressed in a variety of human cancers.
In the field of molecular biology, the Mi-2/NuRDcomplex, is a group of associated proteins with both ATP-dependent chromatin remodeling and histone deacetylase activities. As of 2007, Mi-2/NuRD was the only known protein complex that couples chromatin remodeling ATPase and chromatin deacetylation enzymatic functions.
Memory is commonly referred to as the ability to encode, store, retain and subsequently recall information and past experiences in the human brain. This process involves many proteins, one of which is the Histone-binding protein RbAp48, encoded by the RBBP4 gene in humans.
{{cite book}}
: |journal=
ignored (help)This article incorporates text from the United States National Library of Medicine, which is in the public domain.