CUTL1

Last updated
CUX1
CUTL1 protein.png
Identifiers
Aliases CUX1 , CASP, CDP, CDP/Cut, CDP1, COY1, CUTL1, CUX, Clox, Cux/CDP, GOLIM6, Nbla10317, p100, p110, p200, p75, cut like homeobox 1, GDDI
External IDs OMIM: 116896 HomoloGene: 22551 GeneCards: CUX1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

RefSeq (protein)

n/a

Location (UCSC) Chr 7: 101.82 – 102.28 Mb n/a
PubMed search [2] n/a
Wikidata
View/Edit Human

Cux1 (CUTL1, CDP, CDP/Cux) is a homeodomain protein that in humans is encoded by the CUX1 gene. [3] [4] [5] [6]

Function

The protein encoded by this gene is a member of the homeodomain family of DNA binding proteins. It regulates gene expression, morphogenesis, and differentiation and it also plays a role in cell cycle progression, particularly at S-phase. Several alternatively spliced transcript variants of this gene have been described, but the full-length nature of some of these variants has not been determined, and the p200 isoform of Cux1 is processed proteolytically to smaller active isoforms, such as p110. [6] Cux1 DNA binding is stimulated by activation of the PAR2/F2RL1 cell-surface G-protein-coupled receptor in fibroblasts and breast-cancer epithelial cells to regulate Matrix metalloproteinase 10, Interleukin1-alpha, and Cyclo-oxygenase 2 (COX2) genes. [7]

Role in tumor growth

Genetic data from over 7,600 cancer patients shows that over 1% has the deactivated CUX1 which links to progression of tumor growth. Researchers from the Wellcome Trust Sanger Institute reported that the mutation of CUX1 reduces the inhibitory effects of a biological inhibitor, PIK3IP1 (phosphoinositide-3-kinase interacting protein 1), resulted in higher activity of the growth promoting enzyme, phosphoinositide 3-kinase (PI3K) which leads to tumor progression. Although CUX1 is mutated at a lower rate compared to other known gene mutations that cause cancer, this deactivated gene is found across many cancer types in this study to be the underlying cause of the disease. [8] [9]

CASP

Model of tethering involving CASP. ExternalImageImagec.jpg
Model of tethering involving CASP.

The CUX1 gene Alternatively Spliced Product was first reported in 1997. [11] [lower-alpha 1] The CUX1 gene has up to 33 exons. CASP mRNA includes exons 1 through 14 and 25 through 33. [13] The human CASP protein is predicted to contain 678 amino acids, of which 400 are shared with CUTL1. [11] CASP protein is approximately 80 k D. [11] It lacks the DNA binding region of CUTL1, [11] [14] but instead contains a trans-membrane domain that allows it to insert into lipid bilayers. [14] It has been localized to the Golgi apparatus. [14]

CASP has been reported to be part of a complex with Golgin 84 that tethers COPI vesicles and is important for retrograde transport in the Golgi and between the Golgi and endoplasmic reticulum. [15] The targeting of vesicles involves tethers and SNAREs. [15]

Interactions

The CUX1 network identified in the BioPlex searchable website. BioPlexCUX1c.jpg
The CUX1 network identified in the BioPlex searchable website.

Cux1 (CUTL1, CDP, CDP/Cux) has been shown to interact with:

These physical interactions are reported in BioPlex 2.0

Notes

  1. This CASP is not the same as the scaffolding protein called CASP [12] for Cytohesin/ARNO ... Scaffolding Protein

Related Research Articles

<span class="mw-page-title-main">TATA-binding protein</span> Protein-coding gene in the species Homo sapiens

The TATA-binding protein (TBP) is a general transcription factor that binds specifically to a DNA sequence called the TATA box. This DNA sequence is found about 30 base pairs upstream of the transcription start site in some eukaryotic gene promoters.

<span class="mw-page-title-main">POU2F1</span> Protein-coding gene in the species Homo sapiens

POU domain, class 2, transcription factor 1 is a protein that in humans is encoded by the POU2F1 gene.

<span class="mw-page-title-main">GGA1</span> Protein-coding gene in the species Homo sapiens

ADP-ribosylation factor-binding protein GGA1 is a protein that in humans is encoded by the GGA1 gene.

<span class="mw-page-title-main">MCM3</span> Protein-coding gene in the species Homo sapiens

DNA replication licensing factor MCM3 is a protein that in humans is encoded by the MCM3 gene.

<span class="mw-page-title-main">NFYB</span> Protein-coding gene in the species Homo sapiens

Nuclear transcription factor Y subunit beta is a protein that in humans is encoded by the NFYB gene.

<span class="mw-page-title-main">Y box binding protein 1</span> Protein-coding gene in the species Homo sapiens

Y box binding protein 1 also known as Y-box transcription factor or nuclease-sensitive element-binding protein 1 is a protein that in humans is encoded by the YBX1 gene.

<span class="mw-page-title-main">RANBP9</span> Protein-coding gene in the species Homo sapiens

Ran-binding protein 9 is a protein that in humans is encoded by the RANBP9 gene.

<span class="mw-page-title-main">Perilipin-3</span> Protein-coding gene in the species Homo sapiens

Mannose-6-phosphate receptor binding protein 1 (M6PRBP1) is a protein which in humans is encoded by the M6PRBP1 gene. Its gene product, as well as the gene itself, is commonly known as TIP47.

<span class="mw-page-title-main">NFYC</span> Protein-coding gene in the species Homo sapiens

Nuclear transcription factor Y subunit gamma is a protein that in humans is encoded by the NFYC gene.

<span class="mw-page-title-main">DLX3</span> Mammalian protein found in Homo sapiens

Homeobox protein DLX-3 is a protein that in humans is encoded by the DLX3 gene.

<span class="mw-page-title-main">PHOX2A</span> Protein-coding gene in humans

Paired mesoderm homeobox protein 2A is a protein that in humans is encoded by the PHOX2A gene.

<span class="mw-page-title-main">CCAAT/enhancer binding protein zeta</span> Protein-coding gene in the species Homo sapiens

CCAAT/enhancer-binding protein zeta is a protein that in humans is encoded by the CEBPZ gene.

<i>NFIC</i> (gene) Protein-coding gene in the species Homo sapiens

Nuclear factor 1 C-type is a protein that in humans is encoded by the NFIC gene.

<span class="mw-page-title-main">Nucleobindin 1</span> Protein-coding gene in the species Homo sapiens

Nucleobindin-1 (NUCB1), also known as calnuc, is a protein that in humans is encoded by the NUCB1 gene.

<span class="mw-page-title-main">PRRX1</span> Protein-coding gene in the species Homo sapiens

Paired related homeobox 1 is a protein that in humans is encoded by the PRRX1 gene.

<span class="mw-page-title-main">TGOLN2</span> Protein-coding gene in the species Homo sapiens

Trans-Golgi network integral membrane protein 2 is a protein that in humans is encoded by the TGOLN2 gene.

<span class="mw-page-title-main">CDIPT</span> Protein-coding gene in the species Homo sapiens

CDP-diacylglycerol—inositol 3-phosphatidyltransferase is an enzyme that in humans is encoded by the CDIPT gene.

<span class="mw-page-title-main">CUT domain</span>

In molecular biology, the CUT domain is a DNA-binding motif which can bind independently or in cooperation with the homeodomain, which is often found downstream of the CUT domain. Proteins display two modes of DNA binding, which hinge on the homeodomain and on the linker that separates it from the CUT domain, and two modes of transcriptional stimulation, which hinge on the homeodomain.

<span class="mw-page-title-main">Giantin</span> Protein-coding gene in the species Homo sapiens

Giantin or Golgin subfamily B member 1 is a protein that in humans is encoded by the GOLGB1 gene. Giantin is located at the cis-medial rims of the Golgi apparatus and is part of the Golgi matrix that is responsible for membrane trafficking in secretory pathway of proteins. This function is key for proper localisation of proteins at the plasma membrane and outside the cell which is important for cell function that is dependent on for example receptors and the extracellular matrix function. Recent animal model knockout studies of GOLGB1 in mice, rat, and zebrafish have shown that phenotypes are different between species ranging from mild to severe craniofacial defects in the rodent models to just minor size defects in zebrafish. However, in adult zebrafish a tumoral calcinosis-like phenotype was observed, and in humans such phenotype has been linked to defective glycosyltransferase function.

CUX1 is an animal gene. The name stands for Cut like homeobox 1. The term "cut" derives from the "cut wing" phenotype observed in a mutant of Drosophila melanogaster. In mammals, a CCAAT-displacement activity was originally described in DNA binding assays. The human gene was identified following purification of the CCAAT-displacement protein (CDP) and has been successively been called CDP, Cut-like 1 (CUTL1), CDP/Cut and finally, CUX1.. Cut homeobox genes are present in all metazoans. In mammals, CUX1 is expressed ubiquitously in all tissues. A second gene, called CUX2, is expressed primarily in neuronal cells.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000257923 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. Scherer SW, Neufeld EJ, Lievens PM, Orkin SH, Kim J, Tsui LC (May 1993). "Regional localization of the CCAAT displacement protein gene (CUTL1) to 7q22 by analysis of somatic cell hybrids". Genomics. 15 (3): 695–6. doi:10.1006/geno.1993.1130. PMID   8468066.
  4. Glöckner G, Scherer S, Schattevoy R, Boright A, Weber J, Tsui LC, Rosenthal A (December 1998). "Large-Scale Sequencing of Two Regions in Human Chromosome 7q22: Analysis of 650 kb of Genomic Sequence around the EPO and CUTL1 Loci Reveals 17 Genes". Genome Res. 8 (10): 1060–73. doi:10.1101/gr.8.10.1060. PMC   310788 . PMID   9799793.
  5. Oka T, Ungar D, Hughson FM, Krieger M (April 2004). "The COG and COPI Complexes Interact to Control the Abundance of GEARs, a Subset of Golgi Integral Membrane Proteins". Mol. Biol. Cell. 15 (5): 2423–35. doi:10.1091/mbc.E03-09-0699. PMC   404034 . PMID   15004235.
  6. 1 2 "Entrez Gene: CUTL1 cut-like 1, CCAAT displacement protein (Drosophila)".
  7. Wilson BJ, Harada R, LeDuy L, Hollenberg MD, Nepveu A (January 2009). "CUX1 transcription factor is a downstream effector of the proteinase-activated receptor 2 (PAR2)". J. Biol. Chem. 284 (1): 36–45. doi: 10.1074/jbc.M803808200 . PMID   18952606.
  8. Press Release (8 December 2013). "Gene promotes one in a hundred of tumours". Wellcome Trust Sanger Institute. Retrieved 17 December 2013.
  9. Wong CC, Martincorena I, Rust AG, et al. (2013). "Inactivating CUX1 mutations promote tumorigenesis". Nature Genetics. 46 (1): 33–8. doi:10.1038/ng.2846. PMC   3874239 . PMID   24316979.
  10. Sohda M, Misumi Y, Yamamoto A, Nakamura N, Ogata S, Sakisaka S, Hirose S, Ikehara Y, Oda K (2010). "Interaction of Golgin-84 with the COG complex mediates the intra-Golgi retrograde transport". Traffic. 11 (12): 1552–66. doi: 10.1111/j.1600-0854.2010.01123.x . PMID   20874812. S2CID   20424336.
  11. 1 2 3 4 Lievens PM, Tufarelli C, Donady JJ, Stagg A, Neufeld EJ (1997). "CASP, a novel, highly conserved alternative-splicing product of the CDP/cut/cux gene, lacks cut-repeat and homeo DNA-binding domains, and interacts with full-length CDP in vitro". Gene. 197 (1–2): 73–81. doi:10.1016/s0378-1119(97)00243-6. PMID   9332351.
  12. Mansour M, Lee SY, Pohajdak B (2002). "The N-terminal coiled coil domain of the cytohesin/ARNO family of guanine nucleotide exchange factors interacts with the scaffolding protein CASP". The Journal of Biological Chemistry. 277 (35): 32302–9. doi: 10.1074/jbc.M202898200 . PMID   12052827.
  13. Ramdzan ZM, Nepveu A (2014). "CUX1, a haploinsufficient tumour suppressor gene overexpressed in advanced cancers". Nature Reviews Cancer. 14 (10): 673–82. doi:10.1038/nrc3805. PMID   25190083. S2CID   20468440.
  14. 1 2 3 Gillingham AK, Pfeifer AC, Munro S (2002). "CASP, the alternatively spliced product of the gene encoding the CCAAT-displacement protein transcription factor, is a Golgi membrane protein related to giantin". Molecular Biology of the Cell. 13 (11): 3761–74. doi:10.1091/mbc.E02-06-0349. PMC   133590 . PMID   12429822.
  15. 1 2 Malsam J, Satoh A, Pelletier L, Warren G (2005). "Golgin tethers define subpopulations of COPI vesicles". Science. 307 (5712): 1095–8. Bibcode:2005Sci...307.1095M. doi:10.1126/science.1108061. PMID   15718469. S2CID   12601850.
  16. Li S, Aufiero B, Schiltz RL, Walsh MJ (June 2000). "Regulation of the homeodomain CCAAT displacement/cut protein function by histone acetyltransferases p300/CREB-binding protein (CBP)-associated factor and CBP". Proc. Natl. Acad. Sci. U.S.A. 97 (13): 7166–71. Bibcode:2000PNAS...97.7166L. doi: 10.1073/pnas.130028697 . PMC   16517 . PMID   10852958.
  17. Gupta S, Luong MX, Bleuming SA, Miele A, Luong M, Young D, Knudsen ES, Van Wijnen AJ, Stein JL, Stein GS (September 2003). "Tumor suppressor pRB functions as a co-repressor of the CCAAT displacement protein (CDP/cut) to regulate cell cycle controlled histone H4 transcription". J. Cell. Physiol. 196 (3): 541–56. doi:10.1002/jcp.10335. PMID   12891711. S2CID   2287673.
  18. Liu J, Barnett A, Neufeld EJ, Dudley JP (July 1999). "Homeoproteins CDP and SATB1 interact: potential for tissue-specific regulation". Mol. Cell. Biol. 19 (7): 4918–26. doi:10.1128/mcb.19.7.4918. PMC   84297 . PMID   10373541.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.