Nuclear receptor 4A1

Last updated
NR4A1
PBB Protein NR4A1 image.jpg
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases NR4A1 , GFRP1, HMR, N10, NAK-1, NGFIB, NP10, NUR77, TR3, nuclear receptor subfamily 4 group A member 1, NH41
External IDs OMIM: 139139 MGI: 1352454 HomoloGene: 1612 GeneCards: NR4A1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001202233
NM_001202234
NM_002135
NM_173157
NM_173158

NM_010444

RefSeq (protein)

NP_034574

Location (UCSC) Chr 12: 52.02 – 52.06 Mb Chr 15: 101.15 – 101.17 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

The nuclear receptor 4A1 (NR4A1 for "nuclear receptor subfamily 4 group A member 1") also known as Nur77, TR3, and NGFI-B is a protein that in humans is encoded by the NR4A1 gene. [5] [6]

Nuclear receptor 4A1 (NR4A1) is a member of the NR4A nuclear receptor family [7] of intracellular transcription factors. [6] [8] NR4A1 is involved in cell cycle mediation, inflammation and apoptosis. [9]

Nuclear receptor 4A1 plays a key role in mediating inflammatory responses in macrophages. [9] In addition, subcellular localization of the NR4A1 protein appears to play a key role in the survival and death of cells. [10]

Expression is inducible by phytohemagglutinin in human lymphocytes and by serum stimulation of arrested fibroblasts. Translocation of the protein from the nucleus to mitochondria induces apoptosis. Multiple alternatively spliced variants, encoding the same protein, have been identified. [5]

Structure

The NR4A1 gene contains seven exons. An amino terminal transactivation domain is encoded in exon 2, a DNA-binding domain in exons 3 and 4, and dimerisation and ligand-binding domains is exons 5 to 7. [11]

The protein has an atypical ligand-binding domain that is unlike the classical ligand-binding domain in most nuclear receptors. The classical domain contains a ligand-receiving pocket and co-activator site, both of which are lacking in the NR4A family. Whereas most nuclear receptors have a hydrophobic surface that results in a cleft, NR4A1 has a hydrophilic surface. [7]

Cofactors interact with Nuclear receptor 4A1 at a hydrophobic region between helices 11 and 12 to modulate transcription. [7]

Function

Along with the two other NR4A family members, NR4A1 is expressed in macrophages following inflammatory stimuli. This process is mediated by the NF-κB (nuclear factor-kappa B) complex, a ubiquitous transcription factor involved in cellular response to stress. [9]

Nuclear receptor 4A1 can be induced by many physiological and physical stimuli. These include physiological stimuli such as "fatty acids, stress, prostaglandins, growth factors, calcium, inflammatory cytokines, peptide hormones, phorbol esters, and neurotransmitters" and physical stimuli including "magnetic fields, mechanical agitation (causing fluid shear stress), and membrane depolarization". [7] No endogenous ligands that bind to NR4A1 have yet been identified, so modulation occurs at the level of protein expression and posttranslational modification.Besides these, NR4A1 can mediate T cell function, the transcription factor NR4A1 is stably expressed at high levels in tolerant T cells. Overexpression of Nuclear receptor 4A1 inhibits effector T cell differentiation, whereas deletion of NR4A1 overcomes T cell tolerance and exaggerates effector function, as well as enhancing immunity against tumor and chronic virus. Mechanistically, NR4A1 is preferentially recruited to binding sites of the transcription factor AP-1, where it represses effector gene expression by inhibiting AP-1 function. NR4A1 binding also promotes acetylation of histone 3 at lysine 27 (H3K27ac), leading to activation of tolerance-related genes. [12]

There are several ligands that directly bind NR4A1, including cytosporone B, celastrol, and certain polyunsaturated fatty acids. These NR4A1 ligands bind at various NR4A1 sites and show activities that are dependent on ligand structure and cell context. These NR4A1 ligands may have relevance to treatment of cancer, metabolic disease, inflammation, and endometriosis. [13] NR4A1 may play a role in Drug-induced gingival overgrowth associated with exposure to phenytoin, nifedipine, and cyclosporine A. [14]

Biochemistry

Nuclear receptor 4A1 binds as a monomer or homodimer to response element NBRE [15] and as a homodimer to NurRE. [16] It is also capable of heterodimerising with COUP-TF (an orphan nuclear receptor) and retinoid X receptor (RXR) in mediating transcription in response to retinoids. [17]

The binding sites on the response elements for NR4A1, which are common to the two other members of the NR4A family, are: [7]

Evolution and homology

Nuclear receptor 4A1 has the systematic HUGO gene symbol NR4A1. It belongs to a group of three closely related orphan receptors, the NR4A family (NR4A). The other two members are Nuclear receptor 4A2 (NR4A2) and Nuclear receptor 4A3 (NR4A3).

Nuclear receptor 4A1 has a high degree of structural similarity with other family members at the DNA-binding domain with 91-95% sequence conservation. The C-terminal ligand-binding domain is conserved to a lesser extent at 60% and the N-terminal AB region is not conserved, differing in each member. [7]

The three members are similar in biochemistry and function. They are immediate early genes activated in a ligand-independent manner that bind at the homologous sites on response elements. [11]

Nuclear receptor 4A1 and the rest of the NR4A family are structurally similar to other nuclear receptor superfamily members, but contain an extra intron. The DNA-binding domain at exons 3 and 4 of the NR4A1 gene is conserved among all members of the nuclear receptor. [11]

NR4A1 has homologous genes in a range of species including neuronal growth factor-induced clone B in rats, Nur77 in mice and TR3 in humans. [18]

Pathology

Along with 16 other genes, NR4A1 is a signature gene in the metastasis of some primary solid tumours. It is downregulated in this process. [19]

Interactions

Nuclear receptor 4A1 has been shown to interact with:

Related Research Articles

A hormone receptor is a receptor molecule that binds to a specific chemical messenger. Hormone receptors are a wide family of proteins made up of receptors for thyroid and steroid hormones, retinoids and Vitamin D, and a variety of other receptors for various ligands, such as fatty acids and prostaglandins. Hormone receptors are of mainly two classes. Receptors for peptide hormones tend to be cell surface receptors built into the plasma membrane of cells and are thus referred to as trans membrane receptors. An example of this is Actrapid. Receptors for steroid hormones are usually found within the protoplasm and are referred to as intracellular or nuclear receptors, such as testosterone. Upon hormone binding, the receptor can initiate multiple signaling pathways, which ultimately leads to changes in the behavior of the target cells.

The thyroid hormone receptor (TR) is a type of nuclear receptor that is activated by binding thyroid hormone. TRs act as transcription factors, ultimately affecting the regulation of gene transcription and translation. These receptors also have non-genomic effects that lead to second messenger activation, and corresponding cellular response.

<span class="mw-page-title-main">Constitutive androstane receptor</span> Protein-coding gene in humans

The constitutive androstane receptor (CAR) also known as nuclear receptor subfamily 1, group I, member 3 is a protein that in humans is encoded by the NR1I3 gene. CAR is a member of the nuclear receptor superfamily and along with pregnane X receptor (PXR) functions as a sensor of endobiotic and xenobiotic substances. In response, expression of proteins responsible for the metabolism and excretion of these substances is upregulated. Hence, CAR and PXR play a major role in the detoxification of foreign substances such as drugs.

<span class="mw-page-title-main">Nuclear receptor</span> Protein

In the field of molecular biology, nuclear receptors are a class of proteins responsible for sensing steroids, thyroid hormones, vitamins, and certain other molecules. These intracellular receptors work with other proteins to regulate the expression of specific genes thereby controlling the development, homeostasis, and metabolism of the organism.

<span class="mw-page-title-main">Nuclear receptor coactivator 2</span> Protein-coding gene in the species Homo sapiens

The nuclear receptor coactivator 2 also known as NCoA-2 is a protein that in humans is encoded by the NCOA2 gene. NCoA-2 is also frequently called glucocorticoid receptor-interacting protein 1 (GRIP1), steroid receptor coactivator-2 (SRC-2), or transcriptional mediators/intermediary factor 2 (TIF2).

<span class="mw-page-title-main">Nuclear receptor 4A2</span> Protein-coding gene in the species Homo sapiens

The nuclear receptor 4A2 (NR4A2) also known as nuclear receptor related 1 protein (NURR1) is a protein that in humans is encoded by the NR4A2 gene. NR4A2 is a member of the nuclear receptor family of intracellular transcription factors.

<span class="mw-page-title-main">Nuclear receptor 4A3</span> Protein-coding gene in the species Homo sapiens

The nuclear receptor 4A3 (NR4A3) also known as neuron-derived orphan receptor 1 (NOR1) is a protein that in humans is encoded by the NR4A3 gene. NR4A3 is a member of the nuclear receptor family of intracellular transcription factors.

<span class="mw-page-title-main">Germ cell nuclear factor</span> Protein-coding gene in the species Homo sapiens

The germ cell nuclear factor (GCNF), also known as RTR or NR6A1, is a protein that in humans is encoded by the NR6A1 gene. GCNF is a member of the nuclear receptor family of intracellular transcription factors.

<span class="mw-page-title-main">Small heterodimer partner</span> Protein-coding gene in the species Homo sapiens

The small heterodimer partner (SHP) also known as NR0B2 is a protein that in humans is encoded by the NR0B2 gene. SHP is a member of the nuclear receptor family of intracellular transcription factors. SHP is unusual for a nuclear receptor in that it lacks a DNA binding domain. Therefore, it is technically neither a transcription factor nor nuclear receptor but nevertheless it is still classified as such due to relatively high sequence homology with other nuclear receptor family members.

<span class="mw-page-title-main">RAR-related orphan receptor beta</span> Protein-coding gene in the species Homo sapiens

RAR-related orphan receptor beta (ROR-beta), also known as NR1F2 is a nuclear receptor that in humans is encoded by the RORB gene.

<span class="mw-page-title-main">RAR-related orphan receptor alpha</span> Protein-coding gene in the species Homo sapiens

RAR-related orphan receptor alpha (RORα), also known as NR1F1 is a nuclear receptor that in humans is encoded by the RORA gene. RORα participates in the transcriptional regulation of some genes involved in circadian rhythm. In mice, RORα is essential for development of cerebellum through direct regulation of genes expressed in Purkinje cells. It also plays an essential role in the development of type 2 innate lymphoid cells (ILC2) and mutant animals are ILC2 deficient. In addition, although present in normal numbers, the ILC3 and Th17 cells from RORα deficient mice are defective for cytokine production.

<span class="mw-page-title-main">Retinoid X receptor alpha</span> Protein-coding gene in the species Homo sapiens

Retinoid X receptor alpha (RXR-alpha), also known as NR2B1 is a nuclear receptor that in humans is encoded by the RXRA gene.

<span class="mw-page-title-main">Retinoic acid receptor alpha</span> Protein-coding gene in the species Homo sapiens

Retinoic acid receptor alpha (RAR-α), also known as NR1B1 is a nuclear receptor that in humans is encoded by the RARA gene.

<span class="mw-page-title-main">NRIP1</span> Protein-coding gene in the species Homo sapiens

Nuclear receptor-interacting protein 1 (NRIP1) also known as receptor-interacting protein 140 (RIP140) is a protein that in humans is encoded by the NRIP1 gene.

<span class="mw-page-title-main">Retinoid X receptor gamma</span> Protein-coding gene in the species Homo sapiens

Retinoid X receptor gamma (RXR-gamma), also known as NR2B3 is a nuclear receptor that in humans is encoded by the RXRG gene.

<span class="mw-page-title-main">COUP-TFI</span> Protein-coding gene in the species Homo sapiens

COUP-TF1 also known as NR2F1 is a protein that in humans is encoded by the NR2F1 gene. This protein is a member of nuclear hormone receptor family of steroid hormone receptors.

<span class="mw-page-title-main">Estrogen-related receptor alpha</span> Protein-coding gene in the species Homo sapiens

Estrogen-related receptor alpha (ERRα), also known as NR3B1, is a nuclear receptor that in humans is encoded by the ESRRA gene. ERRα was originally cloned by DNA sequence homology to the estrogen receptor alpha, but subsequent ligand binding and reporter-gene transfection experiments demonstrated that estrogens did not regulate ERRα. Currently, ERRα is considered an orphan nuclear receptor.

<span class="mw-page-title-main">Testicular receptor 2</span> Human protein-coding gene

The testicular receptor 2 (TR2) also known as NR2C1 is protein that in humans is encoded by the NR2C1 gene. TR2 is a member of the nuclear receptor family of transcription factors.

<span class="mw-page-title-main">Testicular receptor 4</span> Protein-coding gene in the species Homo sapiens

Testicular receptor 4 also known as NR2C2 is a protein that in humans is encoded by the NR2C2 gene.

<span class="mw-page-title-main">Retinoic acid receptor gamma</span> Protein-coding gene in the species Homo sapiens

Retinoic acid receptor gamma (RAR-γ), also known as NR1B3 is a nuclear receptor encoded by the RARG gene. Adapalene selectively targets retinoic acid receptor beta and retinoic acid receptor gamma and its agonism of the gamma subtype is largely responsible for adapalene's observed effects.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000123358 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000023034 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: NR4A1 nuclear receptor subfamily 4, group A, member 1".
  6. 1 2 Chang C, Kokontis J, Liao SS, Chang Y (1989). "Isolation and characterization of human TR3 receptor: a member of steroid receptor superfamily". Journal of Steroid Biochemistry. 34 (1–6): 391–395. doi:10.1016/0022-4731(89)90114-3. PMID   2626032.
  7. 1 2 3 4 5 6 Maxwell MA, Muscat GE (2006). "The NR4A subgroup: immediate early response genes with pleiotropic physiological roles". Nuclear Receptor Signaling. 4: e002. doi:10.1621/nrs.04002. PMC   1402209 . PMID   16604165.
  8. Milbrandt J (May 1988). "Nerve growth factor induces a gene homologous to the glucocorticoid receptor gene". Neuron. 1 (3): 183–188. doi:10.1016/0896-6273(88)90138-9. PMID   3272167. S2CID   41639878.
  9. 1 2 3 Pei L, Castrillo A, Tontonoz P (April 2006). "Regulation of macrophage inflammatory gene expression by the orphan nuclear receptor Nur77". Molecular Endocrinology. 20 (4): 786–794. doi: 10.1210/me.2005-0331 . PMID   16339277.
  10. Zhang XK (January 2007). "Targeting Nur77 translocation". Expert Opinion on Therapeutic Targets. 11 (1): 69–79. doi:10.1517/14728222.11.1.69. PMID   17150035. S2CID   2217539.
  11. 1 2 3 Saucedo-Cardenas O, Kardon R, Ediger TR, Lydon JP, Conneely OM (March 1997). "Cloning and structural organization of the gene encoding the murine nuclear receptor transcription factor, NURR1". Gene. 187 (1): 135–139. doi:10.1016/S0378-1119(96)00736-6. PMID   9073077.
  12. Liu X, Wang Y, Lu H, Li J, Yan X, Xiao M, et al. (March 2019). "Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction". Nature. 567 (7749): 525–529. Bibcode:2019Natur.567..525L. doi:10.1038/s41586-019-0979-8. PMC   6507425 . PMID   30814730.
  13. Safe S, Shrestha R, Mohankumar K (December 2021). "Orphan nuclear receptor 4A1 (NR4A1) and novel ligands". Essays in Biochemistry. 65 (6): 877–886. doi:10.1042/EBC20200164. PMID   34096590. S2CID   235360253.
  14. Hatano S, Matsuda S, Okanobu A, Furutama D, Memida T, Kajiya M, et al. (July 2021). "The role of nuclear receptor 4A1 (NR4A1) in drug-induced gingival overgrowth". FASEB Journal. 35 (7): e21693. doi:10.1096/fj.202100032R. PMID   34109683. S2CID   235393903.
  15. Hiromura M, Suizu F, Narita M, Kinowaki K, Noguchi M (September 2006). "Identification of nerve growth factor-responsive element of the TCL1 promoter as a novel negative regulatory element". The Journal of Biological Chemistry. 281 (38): 27753–27764. doi: 10.1074/jbc.M602420200 . PMID   16835233.
  16. Philips A, Lesage S, Gingras R, Maira MH, Gauthier Y, Hugo P, Drouin J (October 1997). "Novel dimeric Nur77 signaling mechanism in endocrine and lymphoid cells". Molecular and Cellular Biology. 17 (10): 5946–5951. doi:10.1128/MCB.17.10.5946. PMC   232442 . PMID   9315652.
  17. Han YH, Cao X, Lin B, Lin F, Kolluri SK, Stebbins J, et al. (May 2006). "Regulation of Nur77 nuclear export by c-Jun N-terminal kinase and Akt". Oncogene. 25 (21): 2974–2986. doi: 10.1038/sj.onc.1209358 . PMID   16434970.
  18. Wei T, Geiser AG, Qian HR, Su C, Helvering LM, Kulkarini NH, et al. (April 2007). "DNA microarray data integration by ortholog gene analysis reveals potential molecular mechanisms of estrogen-dependent growth of human uterine fibroids". BMC Women's Health. 7: 5. doi:10.1186/1472-6874-7-5. PMC   1852551 . PMID   17407572.
  19. Ramaswamy S, Ross KN, Lander ES, Golub TR (January 2003). "A molecular signature of metastasis in primary solid tumors". Nature Genetics. 33 (1): 49–54. doi:10.1038/ng1060. PMID   12469122. S2CID   12059602.
  20. Pekarsky Y, Hallas C, Palamarchuk A, Koval A, Bullrich F, Hirata Y, et al. (March 2001). "Akt phosphorylates and regulates the orphan nuclear receptor Nur77". Proceedings of the National Academy of Sciences of the United States of America. 98 (7): 3690–3694. Bibcode:2001PNAS...98.3690P. doi: 10.1073/pnas.051003198 . PMC   31113 . PMID   11274386.
  21. 1 2 Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X, et al. (February 2004). "Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3". Cell. 116 (4): 527–540. doi: 10.1016/S0092-8674(04)00162-X . PMID   14980220.
  22. 1 2 Kim BY, Kim H, Cho EJ, Youn HD (February 2008). "Nur77 upregulates HIF-alpha by inhibiting pVHL-mediated degradation". Experimental & Molecular Medicine. 40 (1): 71–83. doi:10.3858/emm.2008.40.1.71. PMC   2679322 . PMID   18305400.
  23. Sohn YC, Kwak E, Na Y, Lee JW, Lee SK (November 2001). "Silencing mediator of retinoid and thyroid hormone receptors and activating signal cointegrator-2 as transcriptional coregulators of the orphan nuclear receptor Nur77". The Journal of Biological Chemistry. 276 (47): 43734–43739. doi: 10.1074/jbc.M107208200 . PMID   11559707.
  24. Wu WS, Xu ZX, Ran R, Meng F, Chang KS (May 2002). "Promyelocytic leukemia protein PML inhibits Nur77-mediated transcription through specific functional interactions". Oncogene. 21 (24): 3925–3933. doi:10.1038/sj.onc.1205491. PMID   12032831.

Further reading