EGR2

Last updated
EGR2
Protein EGR2 PDB 1a1i.png
Identifiers
Aliases EGR2 , AT591, CMT1D, CMT4E, KROX20, early growth response 2, CHN1
External IDs OMIM: 129010 MGI: 95296 HomoloGene: 20123 GeneCards: EGR2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000399
NM_001136177
NM_001136178
NM_001136179
NM_001321037

Contents

NM_010118
NM_001347458

RefSeq (protein)

NP_000390
NP_001129649
NP_001129650
NP_001129651
NP_001307966

Location (UCSC) Chr 10: 62.81 – 62.82 Mb Chr 10: 67.54 – 67.54 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Early growth response protein 2 is a protein that in humans is encoded by the EGR2 gene. EGR2 (also termed Krox20) is a transcription regulatory factor, containing three zinc finger DNA-binding sites, and is highly expressed in a population of migrating neural crest cells. [5] [6] [7] It is later expressed in the neural crest derived cells of the cranial ganglion. The protein encoded by Krox20 contains two cys2his2-type zinc fingers. Krox20 gene expression is restricted to the early hindbrain development. [6] [8] It is evolutionarily conserved in vertebrates, humans, mice, chicks, and zebra fish. [9] In addition, the amino acid sequence and most aspects of the embryonic gene pattern is conserved among vertebrates, further implicating its role in hindbrain development. [7] [10] [11] [12] When the Krox20 is deleted in mice, the protein coding ability of the Krox20 gene (including the DNA-binding domain of the zinc finger) is diminished. These mice are unable to survive after birth and exhibit major hindbrain defects. [6] [8] These defects include but are not limited to defects in formation of cranial sensory ganglia, partial fusion of the trigeminal nerve (V) with the facial (VII) and auditory (VII) nerves, the proximal nerve roots coming off of these ganglia were disorganized and intertwined among one another as they entered the brainstem, and there was fusion of the glossopharyngeal (IX) nerve complex. [13] [14] [15]

Function

The early growth response protein 2 is a transcription factor with three tandem C2H2-type zinc fingers. Mutations in this gene are associated with the autosomal dominant Charcot-Marie-Tooth disease, type 1D, [16] Dejerine–Sottas disease, [17] and Congenital Hypomyelinating Neuropathy. [18] Two studies have linked EGR2 expression to proliferation of osteoprogenitors [19] and cell lines derived from Ewing sarcoma, which is a highly aggressive bone-associated cancer. [20]

New research suggests that Krox20 - or the lack of it - is the reason for male baldness. [21]

Related Research Articles

<span class="mw-page-title-main">Charcot–Marie–Tooth disease</span> Neuromuscular disease

Charcot–Marie–Tooth disease (CMT) is a hereditary motor and sensory neuropathy of the peripheral nervous system characterized by progressive loss of muscle tissue and touch sensation across various parts of the body. This disease is the most commonly inherited neurological disorder, affecting about one in 2,500 people. It is named after those who classically described it: the Frenchman Jean-Martin Charcot (1825–1893), his pupil Pierre Marie (1853–1940), and the Briton Howard Henry Tooth (1856–1925).

<span class="mw-page-title-main">Schwann cell</span> Glial cell type

Schwann cells or neurolemmocytes are the principal glia of the peripheral nervous system (PNS). Glial cells function to support neurons and in the PNS, also include satellite cells, olfactory ensheathing cells, enteric glia and glia that reside at sensory nerve endings, such as the Pacinian corpuscle. The two types of Schwann cells are myelinating and nonmyelinating. Myelinating Schwann cells wrap around axons of motor and sensory neurons to form the myelin sheath. The Schwann cell promoter is present in the downstream region of the human dystrophin gene that gives shortened transcript that are again synthesized in a tissue-specific manner.

<span class="mw-page-title-main">EGR1</span> Protein-coding gene in the species Homo sapiens

EGR-1 also known as ZNF268 or NGFI-A is a protein that in humans is encoded by the EGR1 gene.

<span class="mw-page-title-main">Dejerine–Sottas disease</span> Medical condition

Dejerine–Sottas disease, also known as, Dejerine–Sottas neuropathy, progressive hypertrophic interstitial polyneuropathy of childhood and onion bulb neuropathy, is a hereditary neurological disorder characterised by damage to the peripheral nerves and resulting progressive muscle wasting. The condition is caused by mutations in a various genes and currently has no known cure.

<span class="mw-page-title-main">Myelin protein zero</span>

Myelin protein zero is a single membrane glycoprotein which in humans is encoded by the MPZ gene. P0 is a major structural component of the myelin sheath in the peripheral nervous system (PNS). Myelin protein zero is expressed by Schwann cells and accounts for over 50% of all proteins in the peripheral nervous system, making it the most common protein expressed in the PNS. Mutations in myelin protein zero can cause myelin deficiency and are associated with neuropathies like Charcot–Marie–Tooth disease and Dejerine–Sottas disease.

<span class="mw-page-title-main">Peripheral myelin protein 22</span> Protein-coding gene in the species Homo sapiens

Growth arrest-specific protein 3 (GAS-3), also called peripheral myelin protein 22 (PMP22), is a protein which in humans is encoded by the PMP22 gene.

<span class="mw-page-title-main">SOX10</span> Transcription factor gene of the SOX family

Transcription factor SOX-10 is a protein that in humans is encoded by the SOX10 gene.

<span class="mw-page-title-main">Homeobox A1</span> Protein-coding gene in humans

Homeobox protein Hox-A1 is a protein that in humans is encoded by the HOXA1 gene.

<span class="mw-page-title-main">HOXB2</span> Protein-coding gene in humans

Homeobox protein Hox-B2 is a protein that in humans is encoded by the HOXB2 gene.

<span class="mw-page-title-main">LITAF</span>

Lipopolysaccharide-induced tumor necrosis factor-alpha factor is a protein that in humans is encoded by the LITAF gene.

<span class="mw-page-title-main">GDAP1</span> Protein-coding gene in the species Homo sapiens

Ganglioside-induced differentiation-associated protein 1 is a type of protein that in humans is encoded by the GDAP1 gene.

<span class="mw-page-title-main">HOXA3</span> Protein-coding gene in the species Homo sapiens

Homeobox protein Hox-A3 is a protein that in humans is encoded by the HOXA3 gene.

<span class="mw-page-title-main">PRX (gene)</span> Protein-coding gene in the species Homo sapiens

Periaxin is a protein that in humans is encoded by the PRX gene.

<span class="mw-page-title-main">NAB2</span>

NGFI-A-binding protein 2 also known as EGR-1-binding protein 2 or melanoma-associated delayed early response protein (MADER) is a protein that in humans is encoded by the NAB2 gene.

<span class="mw-page-title-main">EGR3</span> Protein-coding gene in humans

Early growth response protein 3 is a protein in humans, encoded by the EGR3 gene.

<span class="mw-page-title-main">NAB1</span>

NGFI-A-binding protein 1 is a protein that in humans is encoded by the NAB1 gene.

<span class="mw-page-title-main">ZBTB7B</span> Protein-coding gene in the species Homo sapiens

Zinc finger and BTB domain-containing protein 7B is a protein that in humans is encoded by the ZBTB7B gene. ZFP67 is an early growth response gene that encodes a zinc finger-containing transcription factor that binds to the promoter regions of type I collagen genes and has a role in development.[supplied by OMIM]

<span class="mw-page-title-main">Fig4</span>

Polyphosphoinositide phosphatase also known as phosphatidylinositol 3,5-bisphosphate 5-phosphatase or SAC domain-containing protein 3 (Sac3) is an enzyme that in humans is encoded by the FIG4 gene. Fig4 is an abbreviation for Factor-Induced Gene.

<span class="mw-page-title-main">EGR4</span> Protein-coding gene in the species Homo sapiens

Early growth response protein 4 (EGR-4), also known as AT133, is a protein that in humans is encoded by the EGR4 gene.

Patrick Charnay is a French biologist, researcher. Serving as an Emeritus research director for Inserm, he works and teaches in molecular genetics and development biology at the École normale supérieure (ENS) in Paris.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000122877 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000037868 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Chavrier P, Janssen-Timmen U, Mattéi MG, Zerial M, Bravo R, Charnay P (February 1989). "Structure, chromosome location, and expression of the mouse zinc finger gene Krox-20: multiple gene products and coregulation with the proto-oncogene c-fos". Molecular and Cellular Biology. 9 (2): 787–97. doi:10.1128/mcb.9.2.787. PMC   362656 . PMID   2496302.
  6. 1 2 3 Swiatek PJ, Gridley T (November 1993). "Perinatal lethality and defects in hindbrain development in mice homozygous for a targeted mutation of the zinc finger gene Krox20". Genes & Development. 7 (11): 2071–84. doi: 10.1101/gad.7.11.2071 . PMID   8224839.
  7. 1 2 Wilkinson DG, Bhatt S, Chavrier P, Bravo R, Charnay P (February 1989). "Segment-specific expression of a zinc-finger gene in the developing nervous system of the mouse". Nature. 337 (6206): 461–4. Bibcode:1989Natur.337..461W. doi:10.1038/337461a0. PMID   2915691. S2CID   4336310.
  8. 1 2 Bradley LC, Snape A, Bhatt S, Wilkinson DG (January 1993). "The structure and expression of the Xenopus Krox-20 gene: conserved and divergent patterns of expression in rhombomeres and neural crest". Mechanisms of Development. 40 (1–2): 73–84. doi:10.1016/0925-4773(93)90089-g. PMID   8443108. S2CID   20347966.
  9. Bhat RV, Worley PF, Cole AJ, Baraban JM (April 1992). "Activation of the zinc finger encoding gene krox-20 in adult rat brain: comparison with zif268". Brain Research. Molecular Brain Research. 13 (3): 263–6. doi:10.1016/0169-328x(92)90034-9. PMID   1317498.
  10. Wilkinson DG, Bhatt S, Cook M, Boncinelli E, Krumlauf R (October 1989). "Segmental expression of Hox-2 homoeobox-containing genes in the developing mouse hindbrain". Nature. 341 (6241): 405–9. Bibcode:1989Natur.341..405W. doi:10.1038/341405a0. PMID   2571936. S2CID   4324322.
  11. Hunt P, Gulisano M, Cook M, Sham MH, Faiella A, Wilkinson D, Boncinelli E, Krumlauf R (October 1991). "A distinct Hox code for the branchial region of the vertebrate head". Nature. 353 (6347): 861–4. Bibcode:1991Natur.353..861H. doi:10.1038/353861a0. PMID   1682814. S2CID   4312466.
  12. Oxtoby E, Jowett T (March 1993). "Cloning of the zebrafish krox-20 gene (krx-20) and its expression during hindbrain development". Nucleic Acids Research. 21 (5): 1087–95. doi:10.1093/nar/21.5.1087. PMC   309267 . PMID   8464695.
  13. Frohman MA, Boyle M, Martin GR (October 1990). "Isolation of the mouse Hox-2.9 gene; analysis of embryonic expression suggests that positional information along the anterior-posterior axis is specified by mesoderm". Development. 110 (2): 589–607. doi:10.1242/dev.110.2.589. PMID   1983472.
  14. Murphy P, Davidson DR, Hill RE (September 1989). "Segment-specific expression of a homoeobox-containing gene in the mouse hindbrain". Nature. 341 (6238): 156–9. Bibcode:1989Natur.341..156M. doi:10.1038/341156a0. PMID   2571087. S2CID   4371764.
  15. Nieto MA, Bradley LC, Wilkinson DG (1991). "Conserved segmental expression of Krox-20 in the vertebrate hindbrain and its relationship to lineage restriction". Development. Suppl 2: 59–62. doi:10.1242/dev.113.Supplement_2.59. hdl: 10261/32226 . PMID   1688180.
  16. "Entrez Gene: EGR2 early growth response 2 (Krox-20 homolog, Drosophila)".
  17. Boerkoel CF, Takashima H, Bacino CA, Daentl D, Lupski JR (July 2001). "EGR2 mutation R359W causes a spectrum of Dejerine-Sottas neuropathy". Neurogenetics. 3 (3): 153–7. doi:10.1007/s100480100107. PMID   11523566. S2CID   32746701.
  18. Warner LE, Mancias P, Butler IJ, McDonald CM, Keppen L, Koob KG, Lupski JR (April 1998). "Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies". Nature Genetics. 18 (4): 382–4. doi:10.1038/ng0498-382. PMID   9537424. S2CID   25550479.
  19. Chandra A, Lan S, Zhu J, Siclari VA, Qin L (July 2013). "Epidermal growth factor receptor (EGFR) signaling promotes proliferation and survival in osteoprogenitors by increasing early growth response 2 (EGR2) expression". The Journal of Biological Chemistry. 288 (28): 20488–98. doi: 10.1074/jbc.M112.447250 . PMC   3711314 . PMID   23720781.
  20. Grünewald TG, Bernard V, Gilardi-Hebenstreit P, Raynal V, Surdez D, Aynaud MM, et al. (September 2015). "Chimeric EWSR1-FLI1 regulates the Ewing sarcoma susceptibility gene EGR2 via a GGAA microsatellite". Nature Genetics. 47 (9): 1073–8. doi:10.1038/ng.3363. PMC   4591073 . PMID   26214589.
  21. Le, Lu. "Scientists find skin cells at the root of balding, gray hair". UT Southwestern Medical Center. Retrieved 9 May 2017.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.