IKZF1

Last updated

IKZF1
Identifiers
Aliases IKZF1 , Hs.54452, IK1, IKAROS, LYF1, LyF-1, PPP1R92, PRO0758, ZNFN1A1, CVID13, IKAROS family zinc finger 1
External IDs OMIM: 603023; MGI: 1342540; HomoloGene: 55948; GeneCards: IKZF1; OMA:IKZF1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)
RefSeq (protein)

n/a

Location (UCSC) Chr 7: 50.3 – 50.41 Mb Chr 11: 11.64 – 11.72 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

DNA-binding protein Ikaros also known as Ikaros family zinc finger protein 1 is a protein that in humans is encoded by the IKZF1 gene. [5] [6] [7]

Ikaros - transcription factor

Ikaros is a transcription factor that is encoded by the IKZF genes of the Ikaros family zinc finger group. Zinc finger is a small structural motif of protein that allows protein binding to DNA or RNA molecule that is characterized by the coordination of one or more zinc ions (Zn2+) in order to stabilize the fold.

Ikaros displays crucial functions in the hematopoietic system and is a known regulator of immune cells development, mainly in early B cells, CD4+ T cells. Its dysfunction has been linked to the development of chronic lymphocytic leukemia. [8] [9] In particular, Ikaros has been found in recent years to be a major tumor suppressor involved in human B-cell acute lymphoblastic leukemia [8] and that it also has a part in the differentiation and function of individual T helper cells. [10]

Ikaros also has a role during the later stages of B cell development during VDJ recombination in switch class of the antibody isotypes and expression of the B cell receptor. [11]

In Ikaros knockout mice, T cells but not B cells are generated late in mouse development due to late compensatory expression of the related gene Aiolos (IKZF3). [12] Ikaros point mutant mice are embryonic lethal due to anemia; they have severe defects in terminal erythrocyte and granulocyte differentiation, and excessive macrophage formation. [13] SNPs located near the 3' region of IKZF1 in humans have been linked to susceptibility to childhood acute lymphoblastic leukemia (ALL) [14] as well as type 1 diabetes. [15] The two effects appear to be in opposite directions, with the allele marking susceptibility to ALL protecting from T1D and vice versa. [15]

Further evidence shows that Ikaros regulates the development of medullary thymic epithelial cells (mTECs). Conditional deletion of Ikzf1 in thymic epithelial cells by Foxn1-Cre in mice, results in the dysregulation of various mTEC subsets, including the loss of Aire+ mTECs. The loss of Aire (Autoimmune regulator) expressing mTECs also causes global loss of tissue restricted antigens (TRAs) and Aire-dependent mimetic cell populations, with the loss of TRAs eventually leading to breakdown of immune tolerance. [16]

Genes of the Ikaros Zinc Finger Family group

The Ikaros Zinc Finger (IkZF) family of transcription factors are known regulators of hematopoietic cell development and many immune cells including that of CD4+ T cells.

The IkZF family consists of five members: Ikaros (encoded by the gene Ikzf1), Helios ( Ikzf2 ), Aiolos ( Ikzf3 ), Eos ( Ikzf4 ), and Pegasus ( Ikzf5 ). These factors contain N-terminal zinc finger (ZF) domains, which are responsible for mediating direct interactions with DNA, and C-terminal ZFs, which facilitate homo- and heterodimerization between IkZF family members. [17]

IKZF1 is upregulated in granulocytes, B cells, CD4 and CD8 T cells, and NK cells, and downregulated in erythroblasts, megakaryocytes and monocytes. [18]

Ikaros deficiency

The mutation in the IKZF1 gene can cause dysfunction of the Ikaros transcription factor. The dysfunction affects expression in B cells that can lead to deregulation of the BCR signaling during B cell development and is associated with B cell transformation. The deregulation then can result in low proliferation rate and increased apoptosis of the B cells. The deregulation may be related with lymphoproliferative disorders and different forms of leukemia. [19]

Interactions

IKZF1 has been shown to interact with:

Related Research Articles

<span class="mw-page-title-main">HDAC1</span> Protein-coding gene in the species Homo sapiens

Histone deacetylase 1 (HDAC1) is an enzyme that in humans is encoded by the HDAC1 gene.

<span class="mw-page-title-main">Histone deacetylase 2</span> Protein-coding gene in the species Homo sapiens

Histone deacetylase 2 (HDAC2) is an enzyme that in humans is encoded by the HDAC2 gene. It belongs to the histone deacetylase class of enzymes responsible for the removal of acetyl groups from lysine residues at the N-terminal region of the core histones. As such, it plays an important role in gene expression by facilitating the formation of transcription repressor complexes and for this reason is often considered an important target for cancer therapy.

<span class="mw-page-title-main">BCL6</span> Transcription factor for converting Naive T cells to TFH

Bcl-6 is a protein that in humans is encoded by the BCL6 gene. BCL6 is a master transcription factor for regulation of T follicular helper cells proliferation. BCL6 has three evolutionary conserved structural domains. The interaction of these domains with corepressors allows for germinal center development and leads to B cell proliferation.

<span class="mw-page-title-main">SIN3A</span> Protein-coding gene in the species Homo sapiens

Paired amphipathic helix protein Sin3a is a protein that in humans is encoded by the SIN3A gene.

<span class="mw-page-title-main">Zinc finger and BTB domain-containing protein 16</span> Protein found in humans

Zinc finger and BTB domain-containing protein 16 is a protein that in humans is encoded by the ZBTB16 gene.

<span class="mw-page-title-main">MTA1</span> Protein-coding gene in the species Homo sapiens

Metastasis-associated protein MTA1 is a protein that in humans is encoded by the MTA1 gene. MTA1 is the founding member of the MTA family of genes. MTA1 is primarily localized in the nucleus but also found to be distributed in the extra-nuclear compartments. MTA1 is a component of several chromatin remodeling complexes including the nucleosome remodeling and deacetylation complex (NuRD). MTA1 regulates gene expression by functioning as a coregulator to integrate DNA-interacting factors to gene activity. MTA1 participates in physiological functions in the normal and cancer cells. MTA1 is one of the most upregulated proteins in human cancer and associates with cancer progression, aggressive phenotypes, and poor prognosis of cancer patients.

<span class="mw-page-title-main">KMT2A</span> Protein-coding gene in the species Homo sapiens

Histone-lysine N-methyltransferase 2A, also known as acute lymphoblastic leukemia 1 (ALL-1), myeloid/lymphoid or mixed-lineage leukemia1 (MLL1), or zinc finger protein HRX (HRX), is an enzyme that in humans is encoded by the KMT2A gene.

<span class="mw-page-title-main">CTBP1</span> Protein-coding gene in the species Homo sapiens

C-terminal-binding protein 1 also known as CtBP1 is a protein that in humans is encoded by the CTBP1 gene. CtBP1 is one of two CtBP proteins, the other protein being CtBP2.

<span class="mw-page-title-main">YY1</span> Transcriptional repressor protein

YY1 is a transcriptional repressor protein in humans that is encoded by the YY1 gene.

<span class="mw-page-title-main">Histone deacetylase 5</span> Protein-coding gene in the species Homo sapiens

Histone deacetylase 5 is an enzyme that in humans is encoded by the HDAC5 gene.

<span class="mw-page-title-main">HDAC9</span> Protein-coding gene in the species Homo sapiens

Histone deacetylase 9 is an enzyme that in humans is encoded by the HDAC9 gene.

<span class="mw-page-title-main">IRF4</span> Protein-coding gene in the species Homo sapiens

Interferon regulatory factor 4 (IRF4) also known as MUM1 is a protein that in humans is encoded by the IRF4 gene. IRF4 functions as a key regulatory transcription factor in the development of human immune cells. The expression of IRF4 is essential for the differentiation of T lymphocytes and B lymphocytes as well as certain myeloid cells. Dysregulation of the IRF4 gene can result in IRF4 functioning either as an oncogene or a tumor-suppressor, depending on the context of the modification.

<span class="mw-page-title-main">HDAC7</span>

Histone deacetylase 7 is an enzyme that in humans is encoded by the HDAC7 gene.

<span class="mw-page-title-main">CHD4</span> Protein-coding gene in the species Homo sapiens

Chromodomain-helicase-DNA-binding protein 4 is an enzyme that in humans is encoded by the CHD4 gene. CHD4 is the core nucleosome-remodelling component of the Nucleosome Remodelling and Deacetylase (NuRD) complex.

<span class="mw-page-title-main">SIN3B</span> Protein-coding gene in the species Homo sapiens

Paired amphipathic helix protein Sin3b is a protein that in humans is encoded by the SIN3B gene.

<span class="mw-page-title-main">IKZF3</span> Protein-coding gene in the species Homo sapiens

Zinc finger protein Aiolos also known as Ikaros family zinc finger protein 3 is a protein that in humans is encoded by the IKZF3 gene.

<span class="mw-page-title-main">ZBTB7A</span> Protein-coding gene in the species Homo sapiens

Zinc finger and BTB domain-containing protein 7A is a protein that in humans is encoded by the ZBTB7A gene.

<span class="mw-page-title-main">BCL11B</span> Protein-coding gene in the species Homo sapiens

B-cell lymphoma/leukemia 11B is a protein that in humans is encoded by the BCL11B gene.

<span class="mw-page-title-main">IKZF2</span> Protein-coding gene in the species Homo sapiens

Zinc finger protein Helios is a protein that in humans is encoded by the IKZF2 gene. This protein is a member of Ikaros family of transcription factors.

<span class="mw-page-title-main">IKZF4</span>

Zinc finger protein Eos is a protein that in humans is encoded by the IKZF4 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000185811 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000018654 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Georgopoulos K, Moore DD, Derfler B (October 1992). "Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment". Science. 258 (5083): 808–12. Bibcode:1992Sci...258..808G. doi:10.1126/science.1439790. PMID   1439790.
  6. Hahm K, Ernst P, Lo K, Kim GS, Turck C, Smale ST (November 1994). "The lymphoid transcription factor LyF-1 is encoded by specific, alternatively spliced mRNAs derived from the Ikaros gene". Molecular and Cellular Biology. 14 (11): 7111–23. doi:10.1128/mcb.14.11.7111. PMC   359245 . PMID   7935426.
  7. "Entrez Gene: IKZF1 IKAROS family zinc finger 1 (Ikaros)".
  8. 1 2 Kastner P, Chan S (June 2011). "Role of Ikaros in T-cell acute lymphoblastic leukemia". World Journal of Biological Chemistry. 2 (6): 108–114. doi: 10.4331/wjbc.v2.i6.108 . PMC   3135856 . PMID   21765975.
  9. Oliveira VC, Lacerda MP, Moraes BB, Gomes CP, Maricato JT, Souza OF, et al. (September 2019). "Deregulation of Ikaros expression in B-1 cells: New insights in the malignant transformation to chronic lymphocytic leukemia". Journal of Leukocyte Biology. 106 (3): 581–594. doi:10.1002/JLB.MA1118-454R. PMID   31299112. S2CID   196350761.
  10. Powell MD, Read KA, Sreekumar BK, Oestreich KJ (2019). "Ikaros Zinc Finger Transcription Factors: Regulators of Cytokine Signaling Pathways and CD4+ T Helper Cell Differentiation". Frontiers in Immunology. 10: 1299. doi: 10.3389/fimmu.2019.01299 . PMC   6563078 . PMID   31244845.
  11. Sellars M, Kastner P, Chan S (June 2011). "Ikaros in B cell development and function". World Journal of Biological Chemistry. 2 (6): 132–9. doi: 10.4331/wjbc.v2.i6.132 . PMC   3135860 . PMID   21765979.
  12. Georgopoulos K, Winandy S, Avitahl N (1997). "The role of the Ikaros gene in lymphocyte development and homeostasis". Annual Review of Immunology. 15: 155–76. doi:10.1146/annurev.immunol.15.1.155. PMID   9143685.
  13. Papathanasiou P, Perkins AC, Cobb BS, Ferrini R, Sridharan R, Hoyne GF, et al. (July 2003). "Widespread failure of hematolymphoid differentiation caused by a recessive niche-filling allele of the Ikaros transcription factor". Immunity. 19 (1): 131–44. doi: 10.1016/s1074-7613(03)00168-7 . PMID   12871645.
  14. Papaemmanuil E, Hosking FJ, Vijayakrishnan J, Price A, Olver B, Sheridan E, et al. (September 2009). "Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia". Nature Genetics. 41 (9): 1006–10. doi:10.1038/ng.430. PMC   4915548 . PMID   19684604.
  15. 1 2 Swafford AD, Howson JM, Davison LJ, Wallace C, Smyth DJ, Schuilenburg H, et al. (March 2011). "An allele of IKZF1 (Ikaros) conferring susceptibility to childhood acute lymphoblastic leukemia protects against type 1 diabetes". Diabetes. 60 (3): 1041–4. doi:10.2337/db10-0446. PMC   3046822 . PMID   21270240.
  16. Sin JH, Sucharov J, Kashyap S, Wang Y, Proekt I, Liu X, et al. (October 2023). "Ikaros is a principal regulator of Aire+ mTEC homeostasis, thymic mimetic cell diversity, and central tolerance". Science Immunology. 8 (88): eabq3109. doi:10.1126/sciimmunol.abq3109. PMC   11433069 . PMID   37889983. S2CID   264518068.
  17. Powell MD, Read KA, Sreekumar BK, Oestreich KJ (2019-06-06). "+ T Helper Cell Differentiation". Frontiers in Immunology. 10: 1299. doi: 10.3389/fimmu.2019.01299 . PMC   6563078 . PMID   31244845.
  18. Watkins NA, Gusnanto A, de Bono B, De S, Miranda-Saavedra D, Hardie DL, et al. (May 2009). "A HaemAtlas: characterizing gene expression in differentiated human blood cells". Blood. 113 (19): e1–e9. doi:10.1182/blood-2008-06-162958. PMC   2680378 . PMID   19228925.
  19. Oliveira VC, Lacerda MP, Moraes BB, Gomes CP, Maricato JT, Souza OF, et al. (July 2019). "Deregulation of Ikaros expression in B-1 cells: New insights in the malignant transformation to chronic lymphocytic leukemia". Journal of Leukocyte Biology. 106 (3): 581–594. doi:10.1002/JLB.MA1118-454R. PMID   31299112. S2CID   196350761.
  20. Koipally J, Georgopoulos K (June 2000). "Ikaros interactions with CtBP reveal a repression mechanism that is independent of histone deacetylase activity". The Journal of Biological Chemistry. 275 (26): 19594–602. doi: 10.1074/jbc.M000254200 . PMID   10766745.
  21. 1 2 3 4 Koipally J, Renold A, Kim J, Georgopoulos K (June 1999). "Repression by Ikaros and Aiolos is mediated through histone deacetylase complexes". The EMBO Journal. 18 (11): 3090–100. doi:10.1093/emboj/18.11.3090. PMC   1171390 . PMID   10357820.
  22. 1 2 3 4 5 Koipally J, Georgopoulos K (August 2002). "A molecular dissection of the repression circuitry of Ikaros". The Journal of Biological Chemistry. 277 (31): 27697–705. doi: 10.1074/jbc.M201694200 . PMID   12015313.
  23. Kelley CM, Ikeda T, Koipally J, Avitahl N, Wu L, Georgopoulos K, et al. (April 1998). "Helios, a novel dimerization partner of Ikaros expressed in the earliest hematopoietic progenitors". Current Biology. 8 (9): 508–15. Bibcode:1998CBio....8..508K. doi: 10.1016/s0960-9822(98)70202-7 . PMID   9560339. S2CID   17835058.
  24. Morgan B, Sun L, Avitahl N, Andrikopoulos K, Ikeda T, Gonzales E, et al. (April 1997). "Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation". The EMBO Journal. 16 (8): 2004–13. doi:10.1093/emboj/16.8.2004. PMC   1169803 . PMID   9155026.
  25. Kim J, Sif S, Jones B, Jackson A, Koipally J, Heller E, et al. (March 1999). "Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes". Immunity. 10 (3): 345–55. doi: 10.1016/s1074-7613(00)80034-5 . PMID   10204490.
  26. Honma Y, Kiyosawa H, Mori T, Oguri A, Nikaido T, Kanazawa K, et al. (March 1999). "Eos: a novel member of the Ikaros gene family expressed predominantly in the developing nervous system". FEBS Letters. 447 (1): 76–80. doi: 10.1016/s0014-5793(99)00265-3 . PMID   10218586. S2CID   28898354.
  27. Perdomo J, Holmes M, Chong B, Crossley M (December 2000). "Eos and pegasus, two members of the Ikaros family of proteins with distinct DNA binding activities". The Journal of Biological Chemistry. 275 (49): 38347–54. doi: 10.1074/jbc.M005457200 . PMID   10978333.
  28. Koipally J, Georgopoulos K (June 2002). "Ikaros-CtIP interactions do not require C-terminal binding protein and participate in a deacetylase-independent mode of repression". The Journal of Biological Chemistry. 277 (26): 23143–9. doi: 10.1074/jbc.M202079200 . PMID   11959865.
  29. Katsumura KR, Bresnick EH (April 2017). "The GATA factor revolution in hematology". Blood. 129 (15): 2092–2102. doi:10.1182/blood-2016-09-687871. PMC   5391619 . PMID   28179282.

Further reading