Photoreceptor cell-specific nuclear receptor

Last updated
NR2E3
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases NR2E3 , Nr2e3, A930035N01Rik, PNR, RNR, rd7, ESCS, RP37, nuclear receptor subfamily 2 group E member 3
External IDs OMIM: 604485; MGI: 1346317; HomoloGene: 84397; GeneCards: NR2E3; OMA:NR2E3 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001281446
NM_014249
NM_016346

NM_013708

RefSeq (protein)

NP_055064
NP_057430

NP_038736

Location (UCSC) Chr 15: 71.79 – 71.82 Mb Chr 9: 59.85 – 59.87 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

The photoreceptor cell-specific nuclear receptor (PNR), also known as NR2E3 (nuclear receptor subfamily 2, group E, member 3), is a protein that in humans is encoded by the NR2E3 gene. [5] PNR is a member of the nuclear receptor super family of intracellular transcription factors.

Contents

Function

PNR is exclusively expressed in the retina. The main target genes of PNR are rhodopsin and several opsins which are essential for sight. [6]

Structure and ligands

The crystal structure of PNR's ligand-binding domain is known. It self-dimerizes into, by default, a repressor state. Computer simulations based on this model shows that a ligand could possibly fit into PNR and switch it into a transcription activator. 13-cis retinoic acid is a known weak agonist that fits into such a pocket, but no physiologic ligand is known. Two synthetic compounds, 11A and 11B, appear to be agonists but do not go into the pocket and instead work as allosteric modulators. [7] A more recent screening identifies another compound called photoregulin-1 (PR1) that functions as a reverse agonist, an activity possibly useful in the management of retinitis pigmentosa. [8]

Clinical significance

Mutations in the NR2E3 gene have been linked to several inherited retinal diseases, including enhanced S-cone syndrome (ESCS), [9] a form of retinitis pigmentosa, [10] and Goldmann-Favre syndrome. [11]

Related Research Articles

<span class="mw-page-title-main">Rhodopsin</span> Light-sensitive receptor protein

Rhodopsin, also known as visual purple, is a protein encoded by the RHO gene and a G-protein-coupled receptor (GPCR). It is a light-sensitive receptor protein that triggers visual phototransduction in rods. Rhodopsin mediates dim light vision and thus is extremely sensitive to light. When rhodopsin is exposed to light, it immediately photobleaches. In humans, it is regenerated fully in about 30 minutes, after which the rods are more sensitive. Defects in the rhodopsin gene cause eye diseases such as retinitis pigmentosa and congenital stationary night blindness.

<span class="mw-page-title-main">Retinitis pigmentosa</span> Gradual retinal degeneration leading to progressive sight loss

Retinitis pigmentosa (RP) is a member of a group of genetic disorders called inherited retinal dystrophy (IRD) that cause loss of vision. Symptoms include trouble seeing at night and decreasing peripheral vision. As peripheral vision worsens, people may experience "tunnel vision". Complete blindness is uncommon. Onset of symptoms is generally gradual and often begins in childhood.

<span class="mw-page-title-main">Usher syndrome</span> Recessive genetic disorder causing deafblindness

Usher syndrome, also known as Hallgren syndrome, Usher–Hallgren syndrome, retinitis pigmentosa–dysacusis syndrome or dystrophia retinae dysacusis syndrome, is a rare genetic disorder caused by a mutation in any one of at least 11 genes resulting in a combination of hearing loss and visual impairment. It is the most common cause of deafblindness and is at present incurable.

<span class="mw-page-title-main">Retinal G protein coupled receptor</span> Protein-coding gene in the species Homo sapiens

RPE-retinal G protein-coupled receptor also known as RGR-opsin is a protein that in humans is encoded by the RGR gene. RGR-opsin is a member of the rhodopsin-like receptor subfamily of GPCR. Like other opsins which bind retinaldehyde, it contains a conserved lysine residue in the seventh transmembrane domain. RGR-opsin comes in different isoforms produced by alternative splicing.

<span class="mw-page-title-main">Retinitis pigmentosa GTPase regulator</span> Protein found in humans

X-linked retinitis pigmentosa GTPase regulator is a GTPase-binding protein that in humans is encoded by the RPGR gene. The gene is located on the X-chromosome and is commonly associated with X-linked retinitis pigmentosa (XLRP). In photoreceptor cells, RPGR is localized in the connecting cilium which connects the protein-synthesizing inner segment to the photosensitive outer segment and is involved in the modulation of cargo trafficked between the two segments.

<span class="mw-page-title-main">ABCA4</span> Mammalian protein found in Homo sapiens

ATP-binding cassette, sub-family A (ABC1), member 4, also known as ABCA4 or ABCR, is a protein which in humans is encoded by the ABCA4 gene.

<span class="mw-page-title-main">Peripherin 2</span> Protein-coding gene in the species Homo sapiens

Peripherin-2 is a protein, that in humans is encoded by the PRPH2 gene. Peripherin-2 is found in the rod and cone cells of the retina of the eye. Defects in this protein result in one form of retinitis pigmentosa, an incurable blindness.

<span class="mw-page-title-main">RPE65</span> Protein-coding gene in humans

Retinal pigment epithelium-specific 65 kDa protein is a retinoid isomerohydrolase enzyme of the vertebrate visual cycle. RPE65 is expressed in the retinal pigment epithelium and is responsible for the conversion of all-trans-retinyl esters to 11-cis-retinol during phototransduction. 11-cis-retinol is then used in visual pigment regeneration in photoreceptor cells. RPE65 belongs to the carotenoid oxygenase family of enzymes.

<i>CRX</i> (gene) Protein-coding gene in the species Homo sapiens

Cone-rod homeobox protein is a protein that in humans is encoded by the CRX gene.

<span class="mw-page-title-main">Retinaldehyde-binding protein 1</span> Protein-coding gene in the species Homo sapiens

Retinaldehyde-binding protein 1 (RLBP1) also known as cellular retinaldehyde-binding protein (CRALBP) is a 36-kD water-soluble protein that in humans is encoded by the RLBP1 gene.

<span class="mw-page-title-main">PDE6B</span> Protein-coding gene in the species Homo sapiens

Rod cGMP-specific 3',5'-cyclic phosphodiesterase subunit beta is the beta subunit of the protein complex PDE6 that is encoded by the PDE6B gene. PDE6 is crucial in transmission and amplification of visual signal. The existence of this beta subunit is essential for normal PDE6 functioning. Mutations in this subunit are responsible for retinal degeneration such as retinitis pigmentosa or congenital stationary night blindness.

<span class="mw-page-title-main">SAG (gene)</span>

S-arrestin is a protein that in humans is encoded by the SAG gene.

<i>NRL</i> (gene) Protein-coding gene in the species Homo sapiens

Neural retina-specific leucine zipper protein is a protein that in humans is encoded by the NRL gene.

<span class="mw-page-title-main">RPGRIP1</span> Protein-coding gene in the species Homo sapiens

X-linked retinitis pigmentosa GTPase regulator-interacting protein 1 is a protein in the ciliary transition zone that in humans is encoded by the RPGRIP1 gene. RPGRIP1 is a multi-domain protein containing a coiled-coil domain at the N-terminus, two C2 domains and a C-terminal RPGR-interacting domain (RID). Defects in the gene result in the Leber congenital amaurosis (LCA) syndrome and in the eye disease glaucoma.

<span class="mw-page-title-main">RP1</span> Protein-coding gene in humans

Oxygen-regulated protein 1 also known as retinitis pigmentosa 1 protein (RP1) is a protein that in humans is encoded by the RP1 gene.

<span class="mw-page-title-main">Retinal degeneration (rhodopsin mutation)</span> Retinopathy

Retinal degeneration is a retinopathy which consists in the deterioration of the retina caused by the progressive death of its cells. There are several reasons for retinal degeneration, including artery or vein occlusion, diabetic retinopathy, R.L.F./R.O.P., or disease. These may present in many different ways such as impaired vision, night blindness, retinal detachment, light sensitivity, tunnel vision, and loss of peripheral vision to total loss of vision. Of the retinal degenerative diseases retinitis pigmentosa (RP) is a very important example.

Retinal gene therapy holds a promise in treating different forms of non-inherited and inherited blindness.

<span class="mw-page-title-main">ABHD12</span> Protein-coding gene in the species Homo sapiens

alpha/beta-Hydrolase domain containing 12 (ABHD12) is a serine hydrolase encoded by the ABHD12 gene that participates in the breakdown of the endocannabinoid neurotransmitter 2-arachidonylglycerol (2-AG) in the central nervous system. It is responsible for about 9% of brain 2-AG hydrolysis. Together, ABHD12 along with two other enzymes, monoacylglycerol lipase (MAGL) and ABHD6, control 99% of 2-AG hydrolysis in the brain. ABHD12 also serves as a lysophospholipase and metabolizes lysophosphatidylserine (LPS).

Occult macular dystrophy (OMD) is a rare inherited degradation of the retina, characterized by progressive loss of function in the most sensitive part of the central retina (macula), the location of the highest concentration of light-sensitive cells (photoreceptors) but presenting no visible abnormality. "Occult" refers to the degradation in the fundus being difficult to discern. The disorder is called "dystrophy" instead of "degradation" to distinguish its genetic origin from other causes, such as age. OMD was first reported by Y. Miyake et al. in 1989.

<span class="mw-page-title-main">Goldmann–Favre syndrome</span> Medical condition

Goldmann–Favre syndrome is a rare genetic disorder characterized by early-onset nyctalopia, decreased visual acuity, and abnormal findings of the fundus. It is a type of progressive vitreotapetoretinal degeneration.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000278570 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000032292 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Kobayashi M, Takezawa S, Hara K, Yu RT, Umesono Y, Agata K, et al. (April 1999). "Identification of a photoreceptor cell-specific nuclear receptor". Proceedings of the National Academy of Sciences of the United States of America. 96 (9): 4814–9. Bibcode:1999PNAS...96.4814K. doi: 10.1073/pnas.96.9.4814 . PMC   21774 . PMID   10220376.
  6. Milam AH, Rose L, Cideciyan AV, Barakat MR, Tang WX, Gupta N, et al. (January 2002). "The nuclear receptor NR2E3 plays a role in human retinal photoreceptor differentiation and degeneration". Proceedings of the National Academy of Sciences of the United States of America. 99 (1): 473–8. doi: 10.1073/pnas.022533099 . PMC   117584 . PMID   11773633.
  7. Tan MH, Zhou XE, Soon FF, Li X, Li J, Yong EL, et al. (2013). "The crystal structure of the orphan nuclear receptor NR2E3/PNR ligand binding domain reveals a dimeric auto-repressed conformation". PLOS ONE. 8 (9): e74359. Bibcode:2013PLoSO...874359T. doi: 10.1371/journal.pone.0074359 . PMC   3771917 . PMID   24069298.
  8. Nakamura PA, Tang S, Shimchuk AA, Ding S, Reh TA (November 2016). "Potential of Small Molecule-Mediated Reprogramming of Rod Photoreceptors to Treat Retinitis Pigmentosa". Investigative Ophthalmology & Visual Science. 57 (14): 6407–6415. doi:10.1167/iovs.16-20177. PMC   5134355 . PMID   27893103.
  9. Haider NB, Jacobson SG, Cideciyan AV, Swiderski R, Streb LM, Searby C, et al. (February 2000). "Mutation of a nuclear receptor gene, NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate". Nature Genetics. 24 (2): 127–31. doi:10.1038/72777. PMID   10655056. S2CID   19508439.
  10. Gerber S, Rozet JM, Takezawa SI, dos Santos LC, Lopes L, Gribouval O, et al. (September 2000). "The photoreceptor cell-specific nuclear receptor gene (PNR) accounts for retinitis pigmentosa in the Crypto-Jews from Portugal (Marranos), survivors from the Spanish Inquisition". Human Genetics. 107 (3): 276–84. doi:10.1007/s004390000350. hdl: 10400.17/1708 . PMID   11071390. S2CID   2774255.
  11. Chavala SH, Sari A, Lewis H, Pauer GJ, Simpson E, Hagstrom SA, Traboulsi EI (August 2005). "An Arg311Gln NR2E3 mutation in a family with classic Goldmann-Favre syndrome". The British Journal of Ophthalmology. 89 (8): 1065–6. doi:10.1136/bjo.2005.068130. PMC   1772771 . PMID   16024868.

Further reading