TCF4

Last updated

TCF4
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases TCF4 , E2-2, ITF-2, ITF2, PTHS, SEF-2, SEF2, SEF2-1, SEF2-1A, SEF2-1B, SEF2-1D, TCF-4, bHLHb19, FECD3, transcription factor 4, CDG2T
External IDs OMIM: 602272; MGI: 98506; HomoloGene: 2407; GeneCards: TCF4; OMA:TCF4 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC) Chr 18: 55.22 – 55.66 Mb Chr 18: 69.34 – 69.69 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Transcription factor 4 (TCF-4) also known as immunoglobulin transcription factor 2 (ITF-2) is a protein that in humans is encoded by the TCF4 gene located on chromosome 18q21.2. [5]

Function

TCF4 proteins act as transcription factors which will bind to the immunoglobulin enhancer mu-E5/kappa-E2 motif. TCF4 activates transcription by binding to the E-box (5’-CANNTG-3’) found usually on SSTR2-INR, or somatostatin receptor 2 initiator element. TCF4 is primarily involved in neurological development of the fetus during pregnancy by initiating neural differentiation by binding to DNA. It is found in the central nervous system, somites, and gonadal ridge during early development. Later in development it will be found in the thyroid, thymus, and kidneys while in adulthood TCF4 it is found in lymphocytes, muscles, mature neurons, and gastrointestinal system. [6] [7] [8]


Clinical significance

Mutations in TCF4 cause Pitt-Hopkins Syndrome (PTHS). These mutations cause TCF4 proteins to not bind to DNA properly and control the differentiation of the nervous system. It has been suggested that TCF4 loss-of-function leads to decreased Wnt signaling and, consequently, a reduced neural progenitor proliferation. [9] In most cases that have been studied, the mutations were de novo, meaning it was a new mutation not found in other family members of the patient. Common symptoms of Pitt-Hopkins Syndrome include a wide mouth, gastrointestinal problems, developmental delay of fine motor skills, speech and breathing problems, epilepsy, and other brain defects. [10] [11]

Related Research Articles

<span class="mw-page-title-main">FOXC2</span> Protein-coding gene in the species Homo sapiens

Forkhead box protein C2 (FOXC2) also known as forkhead-related protein FKHL14 (FKHL14), transcription factor FKH-14, or mesenchyme fork head protein 1 (MFH1) is a protein that in humans is encoded by the FOXC2 gene. FOXC2 is a member of the fork head box (FOX) family of transcription factors.

<span class="mw-page-title-main">Twist-related protein 1</span> Transcription factor protein

Twist-related protein 1 (TWIST1) also known as class A basic helix–loop–helix protein 38 (bHLHa38) is a basic helix-loop-helix transcription factor that in humans is encoded by the TWIST1 gene.

<span class="mw-page-title-main">Microphthalmia-associated transcription factor</span> Mammalian protein found in humans

Microphthalmia-associated transcription factor also known as class E basic helix-loop-helix protein 32 or bHLHe32 is a protein that in humans is encoded by the MITF gene.

<span class="mw-page-title-main">Autoimmune regulator</span> Immune system protein

The autoimmune regulator (AIRE) is a protein that in humans is encoded by the AIRE gene. It is a 13kbp gene on chromosome 21q22.3 that encodes 545 amino acids. AIRE is a transcription factor expressed in the medulla of the thymus. It is part of the mechanism which eliminates self-reactive T cells that would cause autoimmune disease. It exposes T cells to normal, healthy proteins from all parts of the body, and T cells that react to those proteins are destroyed.

<span class="mw-page-title-main">ERCC2</span> Mammalian protein found in humans

TFIIH subunit XPD is a protein that in humans is encoded by the ERCC2 gene. It is a component of the general transcription and DNA repair factor IIH (TFIIH) core complex involved in transcription-coupled nucleotide excision repair.

<span class="mw-page-title-main">ZEB2</span> Protein-coding gene in the species Homo sapiens

Zinc finger E-box-binding homeobox 2 is a protein that in humans is encoded by the ZEB2 gene. The ZEB2 protein is a transcription factor that plays a role in the transforming growth factor β (TGFβ) signaling pathways that are essential during early fetal development.

<span class="mw-page-title-main">TCF3</span> Protein-coding gene in the species Homo sapiens

Transcription factor 3, also known as TCF3, is a protein that in humans is encoded by the TCF3 gene. TCF3 has been shown to directly enhance Hes1 expression.

<span class="mw-page-title-main">NEUROD1</span> Protein-coding gene in the species Homo sapiens

Neurogenic differentiation 1 (Neurod1), also called β2, is a transcription factor of the NeuroD-type. It is encoded by the human gene NEUROD1.

<span class="mw-page-title-main">Forkhead box C1</span> Protein-coding gene in the species Homo sapiens

Forkhead box C1, also known as FOXC1, is a protein which in humans is encoded by the FOXC1 gene.

<span class="mw-page-title-main">FOXL2</span> Transcription factor gene of the FOX family

Forkhead box protein L2 is a protein that in humans is encoded by the FOXL2 gene.

<span class="mw-page-title-main">TCF12</span> Protein-coding gene in the species Homo sapiens

Transcription factor 12 is a protein that in humans is encoded by the TCF12 gene.

<i>TBX5</i> (gene) Protein-coding gene that affects limb development and heart and bone function

T-box transcription factor TBX5, is a protein that in humans is encoded by the TBX5 gene. Abnormalities in the TBX5 gene can result in altered limb development, Holt-Oram syndrome, Tetra-amelia syndrome, and cardiac and skeletal problems.

<span class="mw-page-title-main">HOXA13</span> Protein-coding gene in the species Homo sapiens

Homeobox protein Hox-A13 is a protein that in humans is encoded by the HOXA13 gene.

<span class="mw-page-title-main">HEY2</span> Protein-coding gene in the species Homo sapiens

Hairy/enhancer-of-split related with YRPW motif protein 2 (HEY2) also known as cardiovascular helix-loop-helix factor 1 (CHF1) is a protein that in humans is encoded by the HEY2 gene.

<span class="mw-page-title-main">SOX18</span> Protein-coding gene in the species Homo sapiens

Transcription factor SOX-18 is a protein that in humans is encoded by the SOX18 gene.

<span class="mw-page-title-main">Twist-related protein 2</span> Protein-coding gene in the species Homo sapiens

Twist-related protein 2 is a protein that in humans is encoded by the TWIST2 gene. The protein encoded by this gene is a basic helix-loop-helix (bHLH) transcription factor and shares similarity with another bHLH transcription factor, TWIST1. bHLH transcription factors have been implicated in cell lineage determination and differentiation. It is thought that during osteoblast development, this protein may inhibit osteoblast maturation and maintain cells in a preosteoblast phenotype.

<span class="mw-page-title-main">Pitt–Hopkins syndrome</span> Medical condition

Pitt–Hopkins syndrome (PTHS) is a rare genetic disorder characterized by developmental delay, moderate to severe intellectual disability, distinctive facial features, and possible intermittent hyperventilation followed by apnea. Epilepsy often occurs in Pitt-Hopkins. It is part of the clinical spectrum of Rett-like syndromes. Pitt-hopkins syndrome is clinically similar to Angelman syndrome, Rett-syndrome, Mowat Wilson syndrome, and ATR-X syndrome.

<span class="mw-page-title-main">FOXJ1</span> Protein-coding gene in the species Homo sapiens

Forkhead box protein J1 is a protein that in humans is encoded by the FOXJ1 gene. It is a member of the Forkhead/winged helix (FOX) family of transcription factors that is involved in ciliogenesis. FOXJ1 is expressed in ciliated cells of the lung, choroid plexus, reproductive tract, embryonic kidney and pre-somite embryo stage.

<span class="mw-page-title-main">MYF6</span> Protein-coding gene in the species Homo sapiens

Myogenic factor 6 is a protein that in humans is encoded by the MYF6 gene. This gene is also known in the biomedical literature as MRF4 and herculin. MYF6 is a myogenic regulatory factor (MRF) involved in the process known as myogenesis.

<span class="mw-page-title-main">HES7 gene</span> Protein-coding gene in humans

(HES7) or bHLHb37 is protein coding mammalian gene found on chromosome 17 in humans. HES7 is a member of the Hairy and Enhancer of Split families of Basic helix-loop-helix proteins. The gene product is a transcription factor and is expressed cyclically in the presomitic mesoderm as part of the Notch signalling pathway. HES7 is involved in the segmentation of somites from the presomitic mesoderm in vertebrates. The HES7 gene is self-regulated by a negative feedback loop in which the gene product can bind to its own promoter. This causes the gene to be expressed in an oscillatory manner. The HES7 protein also represses expression of Lunatic Fringe (LFNG) thereby both directly and indirectly regulating the Notch signalling pathway. Mutations in HES7 can result in deformities of the spine, ribs and heart. Spondylocostal dysostosis is a common disease caused by mutations in the HES7 gene. The inheritance pattern of Spondylocostal dysostosis is autosomal recessive.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000196628 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000053477 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Henthorn P, McCarrick-Walmsley R, Kadesch T (February 1990). "Sequence of the cDNA encoding ITF-2, a positive-acting transcription factor". Nucleic Acids Research. 18 (3): 678. doi:10.1093/nar/18.3.678. PMC   333500 . PMID   2308860.
  6. de Pontual L, Mathieu Y, Golzio C, Rio M, Malan V, Boddaert N, et al. (April 2009). "Mutational, functional, and expression studies of the TCF4 gene in Pitt-Hopkins syndrome". Human Mutation. 30 (4): 669–676. doi: 10.1002/humu.20935 . PMID   19235238. S2CID   25375730.
  7. Pscherer A, Dörflinger U, Kirfel J, Gawlas K, Rüschoff J, Buettner R, Schüle R (December 1996). "The helix-loop-helix transcription factor SEF-2 regulates the activity of a novel initiator element in the promoter of the human somatostatin receptor II gene". The EMBO Journal. 15 (23): 6680–6690. doi:10.1002/j.1460-2075.1996.tb01058.x. PMC   452492 . PMID   8978694.
  8. D'Rozario M, Zhang T, Waddell EA, Zhang Y, Sahin C, Sharoni M, et al. (April 2016). "Type I bHLH Proteins Daughterless and Tcf4 Restrict Neurite Branching and Synapse Formation by Repressing Neurexin in Postmitotic Neurons". Cell Reports. 15 (2): 386–397. doi:10.1016/j.celrep.2016.03.034. PMC   4946342 . PMID   27050508.
  9. Papes F, Camargo AP, de Souza JS, Carvalho VM, Szeto RA, LaMontagne E, et al. (May 2022). "Transcription Factor 4 loss-of-function is associated with deficits in progenitor proliferation and cortical neuron content". Nature Communications. 13 (1): 2387. Bibcode:2022NatCo..13.2387P. doi:10.1038/s41467-022-29942-w. PMC   9061776 . PMID   35501322.
  10. Amiel J, Rio M, de Pontual L, Redon R, Malan V, Boddaert N, et al. (May 2007). "Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction". American Journal of Human Genetics. 80 (5): 988–993. doi:10.1086/515582. PMC   1852736 . PMID   17436254.
  11. Zweier C, Peippo MM, Hoyer J, Sousa S, Bottani A, Clayton-Smith J, et al. (May 2007). "Haploinsufficiency of TCF4 causes syndromal mental retardation with intermittent hyperventilation (Pitt-Hopkins syndrome)". American Journal of Human Genetics. 80 (5): 994–1001. doi:10.1086/515583. PMC   1852727 . PMID   17436255.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.