MTA1

Last updated

MTA1
Protein MTA1 PDB 2crg.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases MTA1 , metastasis associated 1
External IDs OMIM: 603526; MGI: 2150037; HomoloGene: 3442; GeneCards: MTA1; OMA:MTA1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001203258
NM_004689

RefSeq (protein)

NP_001190187
NP_004680

Location (UCSC) Chr 14: 105.42 – 105.47 Mb Chr 12: 113.06 – 113.1 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Metastasis-associated protein MTA1 is a protein that in humans is encoded by the MTA1 gene. MTA1 is the founding member of the MTA family of genes. [5] [6] MTA1 is primarily localized in the nucleus but also found to be distributed in the extra-nuclear compartments. [7] MTA1 is a component of several chromatin remodeling complexes including the nucleosome remodeling and deacetylation complex (NuRD). [8] [9] MTA1 regulates gene expression by functioning as a coregulator to integrate DNA-interacting factors to gene activity. [10] MTA1 participates in physiological functions in the normal and cancer cells. [11] [12] MTA1 is one of the most upregulated proteins in human cancer and associates with cancer progression, aggressive phenotypes, and poor prognosis of cancer patients. [9] [13]

Contents

Discovery

MTA1 was first cloned by Toh, Pencil and Nicholson in 1994 as a differentially expressed gene in a highly metastatic rat breast cancer cell line. [5] [6] The role in MTA1 in chromatin remodeling was deduced due to the presence of MTA1 polypeptides in the NuRD complex. [8] The first direct target of the MTA1-NuRD complex was ERα. [14] MTA2 was initially recognized as MTA1-like 1 gene, named as MTA1-L1, as a randomly selected clone from a large-scale sequencing effort of human cDNAs by Takashi Tokino's laboratory. MTA2's suspected role in chromatin remodeling was inferred from the prevalence of MTA2 polypeptides with the NuRD complex in a proteomic study. [15] [16]

Gene and spliced variants

The MTA1 is 715/703 amino acids long, coded by one of three genes of the MTA family and localized on chromosome 14q32 in human and on chromosome 12F in mouse. There are 21 exons spread over a region of about 51-kb in human MTA1. Alternative splicing from 21 exons generates 20 transcripts, ranging from 416-bp to 2.9-kb long. [16] However, open-reading frames are present only in eight spliced transcripts which code six proteins and two polypeptides and remaining transcripts are non-coding long RNAs some of which retain intron sequences. Murine Mta1 contains three protein coding transcripts and three non-coding RNA transcripts. [16] Among human MTA1 variants, only two spliced variants are characterized: ZG29p variant is derived from the c-terminal MTA1, with 251 amino acids and 29-kDa molecular weight; [17] and MTA1s variant generated from alternative splicing of a middle exon followed by a frame-shift, is 430 amino acids and 47-kDa molecular weight. [18]

Protein domains

The conserved domains of MTA1 include a BAH (Bromo-Adjacent Homology), an ELM2 (egl-27 and MTA1 homology), a SANT (SWI, ADA2, N-CoR, TFIIIB-B) and a GATA-like zinc finger. The C-terminal divergent region of MTA1 has an Src homology 3-binding domain, acidic regions, and nuclear localization signals. The presence of these domains revealed the role of MTA1 in interactions with modified or unmodified histone and non-histone proteins, chromatin remodeling, and modulation of gene transcription. [9] [19] [20] [21] MTA1 undergoes multiple post-translation modifications: acetylation on lysine 626, ubiquitination on lysine 182 and lysine 626, sumoylation on lysine 509, and methylation on lysine 532. [22] [23] [24] The structural insights of MTA1 domains are deduced from studies involving complexes with HDAC1 or RbAp48 subunits of the NuRD complexes. [19] [20] The MTA1s variant is an N-terminal portion of MTA1 without nuclear localization sequence but contains a novel sequence of 33 amino acids in its C-terminal region. The novel sequence harbors a nuclear receptor binding motif LXXLL which confers MTA1 with an ability to interact with estrogen receptor alpha or other type I nuclear receptors. [18] The ZG29p variant represents the c-terminal MTA1 with two proline-rich SH3 binding sites. [17] [25]

Regulation

Expression of MTA1 is influenced by transcription and non-transcriptional mechanisms. MTA1 expression is regulated by growth factors, growth factor receptors, oncogenes, environmental stress, ionizing radiation, inflammation, and hypoxia. [9] [12] The transcription of MTA1 is stimulated by transcriptional factors including, c-Myc, [26] SP1, [27] CUTL1 homeodomain, [28] NF-ḵB, [29] HSF1, [30] HIF-1a, [31] and Clock/BMAL1 complex, [32] and inhibited by p53. [33] Non-genomic mechanisms of MTA1 expression include post-transcriptional regulations such as ubiquitination by RING-finger ubiquitin-protein ligase COP1 [34] or interaction with tumor suppressor ARF [24] or micro-RNAs such as miR-30c, miR-661 and miR-125a-3p. [35] [36] [37] [38]

Targets

Functions of MTA1 are regulated by its post-translational modifications, modulating the roles of effector molecules, interacting with other regulatory proteins and chromatin remodeling machinery, and modulating the expression of target genes via interacting with the components of the NuRD complex including HDACs. [9] [19] [20]

MTA1 suppresses transcription of breast cancer type 1 susceptibility gene, [39] PTEN, [40] p21WAF, [41] guanine nucleotide-binding protein G(i) subunit alpha-2, [22] SMAD family member 7, [42] nuclear receptor subfamily 4 group A member 1, [43] and homeobox protein SIX3, [44] and represses BCL11B [45] as well as E-cadherin expression. [46] [47]

MTA1 is a dual coregulatory as it stimulates the transcription of Stat3, [48] breast cancer-amplified sequence 3, [49] FosB, [28] paired box gene 5, [50] transglutaminase 2, [51] myeloid differentiation primary response 88, [52] tumor suppressorp14/p19ARF, [27] [53] tyrosine hydroxylase, [54] clock gene CRY1, [32] SUMO2, [23] and Wnt1 and rhodopsin due to release of their transcriptional inhibition by homeodomain protein Six3, [44] [55]

MTA1 interacts with ERα and coregulatory factors such as MAT1, [56] MICoA, [57] [58] and LMO4, [59] which inhibits ER transactivation activity. [14] MTA1 also deacetylate its target proteins such as p53 and HIF and modulates their transactivation functions. [60] [61] Furthermore, MTA1 could potentially modulate the expression of target genes through the microRNA network as MTA1 knockdown results modulation of miR-210, miR-125b, miR-194, miR-103, and miR-500. [62] [63]

Cellular functions

MTA1 modulates the expression of target genes due to its ability to act as a corepressor or coactivator. MTA1 targets and/or effector pathways regulate pathways with cellular functions in both normal and cancer cells. [11] [12] Physiological functions of MTA1 include: its role in the brain due to MTA1 interactions with DJ1 [53] and endophilin-3; [64] regulation of rhodopsin expression in the mouse eye; modifier of circadian rhythm due to MTA1 interactions with the CLOCK-BMAL1 complex and stimulation of Cry-transcription; in heart development due to MTA1-FOG2 interaction; in mammary gland development as MTA1 depletion leads to ductal hypobranching, in spermatogenesis; in immunomodulation due to differential effects on the expression of cytokines in the resting and activated macrophage; in liver regeneration following hepatic injury; differentiation of mesenchymal stem cells into osteogenic axis; and a component of DNA-damage response. [11] In cancer cells, MTA1 and its downstream effectors regulate genes and/or pathways with roles in transformation, invasion, survival, angiogenesis, epithelial-to-mesenchymal transition, metastasis, DNA damage response, and hormone-independence of breast cancer. [9] [12]

Notes

Related Research Articles

<span class="mw-page-title-main">Gene expression</span> Conversion of a genes sequence into a mature gene product or products

Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, proteins or non-coding RNA, and ultimately affect a phenotype. These products are often proteins, but in non-protein-coding genes such as transfer RNA (tRNA) and small nuclear RNA (snRNA), the product is a functional non-coding RNA. The process of gene expression is used by all known life—eukaryotes, prokaryotes, and utilized by viruses—to generate the macromolecular machinery for life.

<span class="mw-page-title-main">PELP-1</span> Mammalian protein found in Homo sapiens

Proline-, glutamic acid- and leucine-rich protein 1 (PELP1) also known as modulator of non-genomic activity of estrogen receptor (MNAR) and transcription factor HMX3 is a protein that in humans is encoded by the PELP1 gene. is a transcriptional corepressor for nuclear receptors such as glucocorticoid receptors and a coactivator for estrogen receptors.

Zbtb7, whose protein product is also known as Pokemon, is a gene that functions as a regulator of cellular growth and a proto oncogene.

<span class="mw-page-title-main">Mothers against decapentaplegic homolog 3</span> Protein-coding gene in humans

Mothers against decapentaplegic homolog 3 also known as SMAD family member 3 or SMAD3 is a protein that in humans is encoded by the SMAD3 gene.

<span class="mw-page-title-main">Paraspeckle</span> Cell compartment found in the nucleuss interchromatin space

In cell biology, a paraspeckle is an irregularly shaped compartment of the cell, approximately 0.2-1 μm in size, found in the nucleus' interchromatin space. First documented in HeLa cells, where there are generally 10-30 per nucleus, Paraspeckles are now known to also exist in all human primary cells, transformed cell lines and tissue sections. Their name is derived from their distribution in the nucleus; the "para" is short for parallel and the "speckle" refers to the splicing speckles to which they are always in close proximity. Their function is still not fully understood, but they are thought to regulate gene expression by sequestrating proteins or mRNAs with inverted repeats in their 3′ UTRs.

mir-7 microRNA precursor

This family represents the microRNA (miRNA) precursor mir-7. This miRNA has been predicted or experimentally confirmed in a wide range of species. miRNAs are transcribed as ~70 nucleotide precursors and subsequently processed by the Dicer enzyme to give a ~22 nucleotide product. In this case the mature sequence comes from the 5' arm of the precursor. The extents of the hairpin precursors are not generally known and are estimated based on hairpin prediction. The involvement of Dicer in miRNA processing suggests a relationship with the phenomenon of RNA interference.

<span class="mw-page-title-main">CARM1</span> Mammalian protein found in Homo sapiens

CARM1, also known as PRMT4, is an enzyme encoded by the CARM1 gene found in human beings, as well as many other mammals. It has a polypeptide (L) chain type that is 348 residues long, and is made up of alpha helices and beta sheets. Its main function includes catalyzing the transfer of a methyl group from S-Adenosyl methionine to the side chain nitrogens of arginine residues within proteins to form methylated arginine derivatives and S-Adenosyl-L-homocysteine. CARM1 is a secondary coactivator through its association with p160 family of coactivators. It is responsible for moving cells toward the inner cell mass in developing blastocysts.

<span class="mw-page-title-main">FOXP1</span> Protein-coding gene in the species Homo sapiens

Forkhead box protein P1 is a protein that in humans is encoded by the FOXP1 gene. FOXP1 is necessary for the proper development of the brain, heart, and lung in mammals. It is a member of the large FOX family of transcription factors.

<span class="mw-page-title-main">PAK1</span> Mammalian protein found in Homo sapiens

Serine/threonine-protein kinase PAK 1 is an enzyme that in humans is encoded by the PAK1 gene.

<span class="mw-page-title-main">EZH2</span> Protein-coding gene in the species Homo sapiens

Enhancer of zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase enzyme encoded by EZH2 gene, that participates in histone methylation and, ultimately, transcriptional repression. EZH2 catalyzes the addition of methyl groups to histone H3 at lysine 27, by using the cofactor S-adenosyl-L-methionine. Methylation activity of EZH2 facilitates heterochromatin formation thereby silences gene function. Remodeling of chromosomal heterochromatin by EZH2 is also required during cell mitosis.

<span class="mw-page-title-main">PAK3</span> Mammalian protein found in Homo sapiens

PAK3 is one of three members of Group I PAK family of evolutionary conserved serine/threonine kinases. PAK3 is preferentially expressed in neuronal cells and involved in synapse formation and plasticity and mental retardation.

<span class="mw-page-title-main">MTA2</span> Protein-coding gene in the species Homo sapiens

Metastasis-associated protein MTA2 is a protein that in humans is encoded by the MTA2 gene.

<span class="mw-page-title-main">TBX3</span> Protein-coding gene in the species Homo sapiens

T-box transcription factor TBX3 is a protein that in humans is encoded by the TBX3 gene.

<span class="mw-page-title-main">PAK5</span>

Serine/threonine-protein kinase PAK 5 is an enzyme that in humans is encoded by the PAK5 gene.

<span class="mw-page-title-main">MTA3</span> Protein-coding gene in the species Homo sapiens

Metastasis-associated protein MTA3 is a protein that in humans is encoded by the MTA3 gene. MTA3 protein localizes in the nucleus as well as in other cellular compartments MTA3 is a component of the nucleosome remodeling and deacetylate (NuRD) complex and participates in gene expression. The expression pattern of MTA3 is opposite to that of MTA1 and MTA2 during mammary gland tumorigenesis. However, MTA3 is also overexpressed in a variety of human cancers.

<span class="mw-page-title-main">MTDH</span> Protein-coding gene in the species Homo sapiens

Metadherin, also known as protein LYRIC or astrocyte elevated gene-1 protein (AEG-1) is a protein that in humans is encoded by the MTDH gene.

<span class="mw-page-title-main">PAK6</span>

Serine/threonine-protein kinase PAK 6 is an enzyme that in humans is encoded by the PAK6 gene.

<span class="mw-page-title-main">BCAS3</span> Protein-coding gene in the species Homo sapiens

Breast carcinoma amplified sequence 3, also known as BCAS3, is a protein which in humans is encoded by the BCAS3 gene. BCAS3 is a gene that is amplified and overexpressed in breast cancer cells.

mir-143 RNA molecule

In molecular biology mir-143 microRNA is a short RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several mechanisms. mir–143 is highly conserved in vertebrates. mir-143 is thought be involved in cardiac morphogenesis but has also been implicated in cancer.

In molecular biology mir-661 microRNA is a short RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several mechanisms.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000182979 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000021144 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 Toh Y, Pencil SD, Nicolson GL (September 1994). "A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses". The Journal of Biological Chemistry. 269 (37): 22958–22963. doi: 10.1016/S0021-9258(17)31603-4 . PMID   8083195.
  6. 1 2 Toh Y, Nicolson GL (December 2014). "Properties and clinical relevance of MTA1 protein in human cancer". Cancer and Metastasis Reviews. 33 (4): 891–900. doi:10.1007/s10555-014-9516-2. PMID   25359582. S2CID   17852701.
  7. Liu J, Wang H, Huang C, Qian H (December 2014). "Subcellular localization of MTA proteins in normal and cancer cells". Cancer and Metastasis Reviews. 33 (4): 843–856. doi:10.1007/s10555-014-9511-7. PMID   25398252. S2CID   7959609.
  8. 1 2 Xue Y, Wong J, Moreno GT, Young MK, Côté J, Wang W (December 1998). "NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities". Molecular Cell. 2 (6): 851–861. doi: 10.1016/s1097-2765(00)80299-3 . PMID   9885572.
  9. 1 2 3 4 5 6 Li DQ, Kumar R (2015). "Unravelling the Complexity and Functions of MTA Coregulators in Human Cancer". Advances in Cancer Research. Vol. 127. pp. 1–47. doi:10.1016/bs.acr.2015.04.005. ISBN   9780128029206. PMID   26093897.
  10. Kumar R, Gururaj AE (2008). "Coregulators as Oncogenes and Tumor Suppressors". In O'Malley BW, Kumar R (eds.). Nuclear Receptor Coregulators and Human Diseases. Hackensack, N.J.: World Scientific. pp. 195–218. doi:10.1142/9789812819178_0004. ISBN   978-981-281-917-8.
  11. 1 2 3 Sen N, Gui B, Kumar R (December 2014). "Physiological functions of MTA family of proteins". Cancer and Metastasis Reviews. 33 (4): 869–877. doi:10.1007/s10555-014-9514-4. PMC   4245464 . PMID   25344801.
  12. 1 2 3 4 Sen N, Gui B, Kumar R (December 2014). "Role of MTA1 in cancer progression and metastasis". Cancer and Metastasis Reviews. 33 (4): 879–889. doi:10.1007/s10555-014-9515-3. PMC   4245458 . PMID   25344802.
  13. Kumar R (December 2014). "Functions and clinical relevance of MTA proteins in human cancer. Preface". Cancer and Metastasis Reviews. 33 (4): 835. doi:10.1007/s10555-014-9509-1. PMC   4245326 . PMID   25348751.
  14. 1 2 Mazumdar A, Wang RA, Mishra SK, Adam L, Bagheri-Yarmand R, Mandal M, et al. (January 2001). "Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor". Nature Cell Biology. 3 (1): 30–37. doi:10.1038/35050532. PMID   11146623. S2CID   23477845.
  15. Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D (August 1999). "Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation". Genes & Development. 13 (15): 1924–35. doi:10.1101/gad.13.15.1924. PMC   316920 . PMID   10444591.
  16. 1 2 3 Kumar R, Wang RA (May 2016). "Structure, expression and functions of MTA genes". Gene. 582 (2): 112–121. doi:10.1016/j.gene.2016.02.012. PMC   4785049 . PMID   26869315.
  17. 1 2 Kleene R, Zdzieblo J, Wege K, Kern HF (August 1999). "A novel zymogen granule protein (ZG29p) and the nuclear protein MTA1p are differentially expressed by alternative transcription initiation in pancreatic acinar cells of the rat". Journal of Cell Science. 112 (15): 2539–2548. doi:10.1242/jcs.112.15.2539. PMID   10393810.
  18. 1 2 Kumar R, Wang RA, Mazumdar A, Talukder AH, Mandal M, Yang Z, et al. (August 2002). "A naturally occurring MTA1 variant sequesters oestrogen receptor-alpha in the cytoplasm". Nature. 418 (6898): 654–657. Bibcode:2002Natur.418..654K. doi:10.1038/nature00889. PMID   12167865. S2CID   4355677.
  19. 1 2 3 Millard CJ, Watson PJ, Celardo I, Gordiyenko Y, Cowley SM, Robinson CV, et al. (July 2013). "Class I HDACs share a common mechanism of regulation by inositol phosphates". Molecular Cell. 51 (1): 57–67. doi:10.1016/j.molcel.2013.05.020. PMC   3710971 . PMID   23791785.
  20. 1 2 3 Alqarni SS, Murthy A, Zhang W, Przewloka MR, Silva AP, Watson AA, et al. (August 2014). "Insight into the architecture of the NuRD complex: structure of the RbAp48-MTA1 subcomplex". The Journal of Biological Chemistry. 289 (32): 21844–21855. doi: 10.1074/jbc.M114.558940 . PMC   4139204 . PMID   24920672.
  21. Millard CJ, Fairall L, Schwabe JW (December 2014). "Towards an understanding of the structure and function of MTA1". Cancer and Metastasis Reviews. 33 (4): 857–867. doi:10.1007/s10555-014-9513-5. PMC   4244562 . PMID   25352341.
  22. 1 2 Ohshiro K, Rayala SK, Wigerup C, Pakala SB, Natha RS, Gururaj AE, et al. (September 2010). "Acetylation-dependent oncogenic activity of metastasis-associated protein 1 co-regulator". EMBO Reports. 11 (9): 691–697. doi:10.1038/embor.2010.99. PMC   2933879 . PMID   20651739.
  23. 1 2 Cong L, Pakala SB, Ohshiro K, Li DQ, Kumar R (December 2011). "SUMOylation and SUMO-interacting motif (SIM) of metastasis tumor antigen 1 (MTA1) synergistically regulate its transcriptional repressor function". The Journal of Biological Chemistry. 286 (51): 43793–43808. doi: 10.1074/jbc.M111.267237 . PMC   3243521 . PMID   21965678.
  24. Nair SS, Li DQ, Kumar R (February 2013). "A core chromatin remodeling factor instructs global chromatin signaling through multivalent reading of nucleosome codes". Molecular Cell. 49 (4): 704–718. doi:10.1016/j.molcel.2012.12.016. PMC   3582764 . PMID   23352453.
  25. Kleene R, Classen B, Zdzieblo J, Schrader M (August 2000). "SH3 binding sites of ZG29p mediate an interaction with amylase and are involved in condensation-sorting in the exocrine rat pancreas". Biochemistry. 39 (32): 9893–9900. doi:10.1021/bi000876i. PMID   10933808.
  26. Zhang XY, DeSalle LM, Patel JH, Capobianco AJ, Yu D, Thomas-Tikhonenko A, et al. (September 2005). "Metastasis-associated protein 1 (MTA1) is an essential downstream effector of the c-MYC oncoprotein". Proceedings of the National Academy of Sciences of the United States of America. 102 (39): 13968–13973. Bibcode:2005PNAS..10213968Z. doi: 10.1073/pnas.0502330102 . PMC   1236531 . PMID   16172399.
  27. 1 2 Li DQ, Pakala SB, Reddy SD, Ohshiro K, Zhang JX, Wang L, et al. (May 2011). "Bidirectional autoregulatory mechanism of metastasis-associated protein 1-alternative reading frame pathway in oncogenesis". Proceedings of the National Academy of Sciences of the United States of America. 108 (21): 8791–8796. Bibcode:2011PNAS..108.8791L. doi: 10.1073/pnas.1018389108 . PMC   3102345 . PMID   21555589.
  28. 1 2 Pakala SB, Singh K, Reddy SD, Ohshiro K, Li DQ, Mishra L, et al. (May 2011). "TGF-β1 signaling targets metastasis-associated protein 1, a new effector in epithelial cells". Oncogene. 30 (19): 2230–2241. doi:10.1038/onc.2010.608. PMC   3617575 . PMID   21258411.
  29. Li DQ, Pakala SB, Nair SS, Eswaran J, Kumar R (January 2012). "Metastasis-associated protein 1/nucleosome remodeling and histone deacetylase complex in cancer". Cancer Research. 72 (2): 387–394. doi:10.1158/0008-5472.CAN-11-2345. PMC   3261506 . PMID   22253283.
  30. Khaleque MA, Bharti A, Gong J, Gray PJ, Sachdev V, Ciocca DR, et al. (March 2008). "Heat shock factor 1 represses estrogen-dependent transcription through association with MTA1". Oncogene. 27 (13): 1886–1893. doi:10.1038/sj.onc.1210834. hdl: 11336/80376 . PMID   17922035. S2CID   7056025.
  31. Yoo YG, Kong G, Lee MO (March 2006). "Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1alpha protein by recruiting histone deacetylase 1". The EMBO Journal. 25 (6): 1231–1241. doi:10.1038/sj.emboj.7601025. PMC   1422150 . PMID   16511565.
  32. 1 2 Li DQ, Pakala SB, Reddy SD, Peng S, Balasenthil S, Deng CX, et al. (2013). "Metastasis-associated protein 1 is an integral component of the circadian molecular machinery". Nature Communications. 4: 2545. Bibcode:2013NatCo...4.2545L. doi: 10.1038/ncomms3545 . PMID   24089055.
  33. Li DQ, Divijendra Natha Reddy S, Pakala SB, Wu X, Zhang Y, Rayala SK, et al. (December 2009). "MTA1 coregulator regulates p53 stability and function". The Journal of Biological Chemistry. 284 (50): 34545–34552. doi: 10.1074/jbc.M109.056499 . PMC   2787316 . PMID   19837670.
  34. Li DQ, Ohshiro K, Reddy SD, Pakala SB, Lee MH, Zhang Y, et al. (October 2009). "E3 ubiquitin ligase COP1 regulates the stability and functions of MTA1". Proceedings of the National Academy of Sciences of the United States of America. 106 (41): 17493–17498. Bibcode:2009PNAS..10617493L. doi: 10.1073/pnas.0908027106 . PMC   2762678 . PMID   19805145.
  35. Zhang Y, Wang XF (December 2014). "Post-transcriptional regulation of MTA family by microRNAs in the context of cancer". Cancer and Metastasis Reviews. 33 (4): 1011–1016. doi:10.1007/s10555-014-9526-0. PMC   4245459 . PMID   25332146.
  36. Kong X, Xu X, Yan Y, Guo F, Li J, Hu Y, et al. (2014). "Estrogen regulates the tumour suppressor MiRNA-30c and its target gene, MTA-1, in endometrial cancer". PLOS ONE. 9 (3): e90810. Bibcode:2014PLoSO...990810K. doi: 10.1371/journal.pone.0090810 . PMC   3940948 . PMID   24595016.
  37. Reddy SD, Pakala SB, Ohshiro K, Rayala SK, Kumar R (July 2009). "MicroRNA-661, a c/EBPalpha target, inhibits metastatic tumor antigen 1 and regulates its functions". Cancer Research. 69 (14): 5639–5642. doi:10.1158/0008-5472.CAN-09-0898. PMC   2721803 . PMID   19584269.
  38. Zhang H, Zhu X, Li N, Li D, Sha Z, Zheng X, et al. (July 2015). "miR-125a-3p targets MTA1 to suppress NSCLC cell proliferation, migration, and invasion". Acta Biochimica et Biophysica Sinica. 47 (7): 496–503. doi: 10.1093/abbs/gmv039 . PMID   25998575.
  39. Molli PR, Singh RR, Lee SW, Kumar R (March 2008). "MTA1-mediated transcriptional repression of BRCA1 tumor suppressor gene". Oncogene. 27 (14): 1971–1980. doi:10.1038/sj.onc.1210839. PMC   2705285 . PMID   17922032.
  40. Reddy SD, Pakala SB, Molli PR, Sahni N, Karanam NK, Mudvari P, et al. (August 2012). "Metastasis-associated protein 1/histone deacetylase 4-nucleosome remodeling and deacetylase complex regulates phosphatase and tensin homolog gene expression and function". The Journal of Biological Chemistry. 287 (33): 27843–27850. doi: 10.1074/jbc.M112.348474 . PMC   3431680 . PMID   22700976.
  41. Li DQ, Pakala SB, Reddy SD, Ohshiro K, Peng SH, Lian Y, et al. (March 2010). "Revelation of p53-independent function of MTA1 in DNA damage response via modulation of the p21 WAF1-proliferating cell nuclear antigen pathway". The Journal of Biological Chemistry. 285 (13): 10044–10052. doi: 10.1074/jbc.M109.079095 . PMC   2843167 . PMID   20071335.
  42. Salot S, Gude R (January 2013). "MTA1-mediated transcriptional repression of SMAD7 in breast cancer cell lines". European Journal of Cancer. 49 (2): 492–499. doi:10.1016/j.ejca.2012.06.019. PMID   22841502.
  43. Yu L, Su YS, Zhao J, Wang H, Li W (August 2013). "Repression of NR4A1 by a chromatin modifier promotes docetaxel resistance in PC-3 human prostate cancer cells". FEBS Letters. 587 (16): 2542–2551. doi: 10.1016/j.febslet.2013.06.029 . PMID   23831020. S2CID   6726902.
  44. 1 2 Kumar R, Balasenthil S, Manavathi B, Rayala SK, Pakala SB (August 2010). "Metastasis-associated protein 1 and its short form variant stimulates Wnt1 transcription through promoting its derepression from Six3 corepressor". Cancer Research. 70 (16): 6649–6658. doi:10.1158/0008-5472.CAN-10-0909. PMC   3711655 . PMID   20682799.
  45. Cismasiu VB, Adamo K, Gecewicz J, Duque J, Lin Q, Avram D (October 2005). "BCL11B functionally associates with the NuRD complex in T lymphocytes to repress targeted promoter". Oncogene. 24 (45): 6753–6764. doi: 10.1038/sj.onc.1208904 . PMID   16091750.
  46. Weng W, Yin J, Zhang Y, Qiu J, Wang X (March 2014). "Metastasis-associated protein 1 promotes tumor invasion by downregulation of E-cadherin". International Journal of Oncology. 44 (3): 812–818. doi: 10.3892/ijo.2014.2253 . PMID   24424621.
  47. Dannenmann C, Shabani N, Friese K, Jeschke U, Mylonas I, Brüning A (September 2008). "The metastasis-associated gene MTA1 is upregulated in advanced ovarian cancer, represses ERbeta, and enhances expression of oncogenic cytokine GRO". Cancer Biology & Therapy. 7 (9): 1460–1467. doi: 10.4161/cbt.7.9.6427 . PMID   18719363.
  48. Pakala SB, Rayala SK, Wang RA, Ohshiro K, Mudvari P, Reddy SD, et al. (June 2013). "MTA1 promotes STAT3 transcription and pulmonary metastasis in breast cancer". Cancer Research. 73 (12): 3761–3770. doi:10.1158/0008-5472.CAN-12-3998. PMC   3686857 . PMID   23580571.
  49. Gururaj AE, Singh RR, Rayala SK, Holm C, den Hollander P, Zhang H, et al. (April 2006). "MTA1, a transcriptional activator of breast cancer amplified sequence 3". Proceedings of the National Academy of Sciences of the United States of America. 103 (17): 6670–6675. Bibcode:2006PNAS..103.6670G. doi: 10.1073/pnas.0601989103 . PMC   1458939 . PMID   16617102.
  50. Balasenthil S, Gururaj AE, Talukder AH, Bagheri-Yarmand R, Arrington T, Haas BJ, et al. (August 2007). "Identification of Pax5 as a target of MTA1 in B-cell lymphomas". Cancer Research. 67 (15): 7132–7138. doi: 10.1158/0008-5472.CAN-07-0750 . PMID   17671180.
  51. Ghanta KS, Pakala SB, Reddy SD, Li DQ, Nair SS, Kumar R (March 2011). "MTA1 coregulation of transglutaminase 2 expression and function during inflammatory response". The Journal of Biological Chemistry. 286 (9): 7132–7138. doi: 10.1074/jbc.M110.199273 . PMC   3044970 . PMID   21156794.
  52. Pakala SB, Reddy SD, Bui-Nguyen TM, Rangparia SS, Bommana A, Kumar R (October 2010). "MTA1 coregulator regulates LPS response via MyD88-dependent signaling". The Journal of Biological Chemistry. 285 (43): 32787–32792. doi: 10.1074/jbc.M110.151340 . PMC   2963354 . PMID   20702415.
  53. 1 2 Li DQ, Kumar R (June 2010). "Mi-2/NuRD complex making inroads into DNA-damage response pathway". Cell Cycle. 9 (11): 2071–2079. doi:10.4161/cc.9.11.11735. PMC   3631012 . PMID   20505336.
  54. Reddy SD, Rayala SK, Ohshiro K, Pakala SB, Kobori N, Dash P, et al. (March 2011). "Multiple coregulatory control of tyrosine hydroxylase gene transcription". Proceedings of the National Academy of Sciences of the United States of America. 108 (10): 4200–4205. Bibcode:2011PNAS..108.4200R. doi: 10.1073/pnas.1101193108 . PMC   3054001 . PMID   21368136.
  55. Manavathi B, Peng S, Rayala SK, Talukder AH, Wang MH, Wang RA, et al. (August 2007). "Repression of Six3 by a corepressor regulates rhodopsin expression". Proceedings of the National Academy of Sciences of the United States of America. 104 (32): 13128–13133. Bibcode:2007PNAS..10413128M. doi: 10.1073/pnas.0705878104 . PMC   1941821 . PMID   17666527.
  56. Talukder AH, Mishra SK, Mandal M, Balasenthil S, Mehta S, Sahin AA, et al. (March 2003). "MTA1 interacts with MAT1, a cyclin-dependent kinase-activating kinase complex ring finger factor, and regulates estrogen receptor transactivation functions". The Journal of Biological Chemistry. 278 (13): 11676–11685. doi: 10.1074/jbc.M209570200 . PMID   12527756.
  57. Mishra SK, Mazumdar A, Vadlamudi RK, Li F, Wang RA, Yu W, et al. (May 2003). "MICoA, a novel metastasis-associated protein 1 (MTA1) interacting protein coactivator, regulates estrogen receptor-alpha transactivation functions". The Journal of Biological Chemistry. 278 (21): 19209–19219. doi: 10.1074/jbc.M301968200 . PMID   12639951.
  58. Talukder AH, Gururaj A, Mishra SK, Vadlamudi RK, Kumar R (August 2004). "Metastasis-associated protein 1 interacts with NRIF3, an estrogen-inducible nuclear receptor coregulator". Molecular and Cellular Biology. 24 (15): 6581–6591. doi:10.1128/MCB.24.15.6581-6591.2004. PMC   444867 . PMID   15254226.
  59. Singh RR, Barnes CJ, Talukder AH, Fuqua SA, Kumar R (November 2005). "Negative regulation of estrogen receptor alpha transactivation functions by LIM domain only 4 protein". Cancer Research. 65 (22): 10594–10601. doi: 10.1158/0008-5472.CAN-05-2268 . PMID   16288053.
  60. Moon HE, Cheon H, Lee MS (November 2007). "Metastasis-associated protein 1 inhibits p53-induced apoptosis". Oncology Reports. 18 (5): 1311–1314. doi: 10.3892/or.18.5.1311 . PMID   17914590.
  61. Moon HE, Cheon H, Chun KH, Lee SK, Kim YS, Jung BK, et al. (October 2006). "Metastasis-associated protein 1 enhances angiogenesis by stabilization of HIF-1alpha". Oncology Reports. 16 (4): 929–935. doi: 10.3892/or.16.4.929 . PMID   16969516.
  62. Zhu X, Zhang X, Wang H, Song Q, Zhang G, Yang L, et al. (July 2012). "MTA1 gene silencing inhibits invasion and alters the microRNA expression profile of human lung cancer cells". Oncology Reports. 28 (1): 218–224. doi: 10.3892/or.2012.1770 . PMID   22576802.
  63. Li Y, Chao Y, Fang Y, Wang J, Wang M, Zhang H, et al. (May 2013). "MTA1 promotes the invasion and migration of non-small cell lung cancer cells by downregulating miR-125b". Journal of Experimental & Clinical Cancer Research. 32 (1): 33. doi: 10.1186/1756-9966-32-33 . PMC   3671210 . PMID   23718732.
  64. Aramaki Y, Ogawa K, Toh Y, Ito T, Akimitsu N, Hamamoto H, et al. (July 2005). "Direct interaction between metastasis-associated protein 1 and endophilin 3". FEBS Letters. 579 (17): 3731–3736. doi: 10.1016/j.febslet.2005.05.069 . PMID   15978591. S2CID   2422645.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.