General transcription factors (GTFs), also known as basal transcriptional factors, are a class of protein transcription factors that bind to specific sites (promoter) on DNA to activate transcription of genetic information from DNA to messenger RNA. GTFs, RNA polymerase, and the mediator (a multi-protein complex) constitute the basic transcriptional apparatus that first bind to the promoter, then start transcription. [1] GTFs are also intimately involved in the process of gene regulation, and most are required for life. [2]
A transcription factor is a protein that binds to specific DNA sequences (enhancer or promoter), either alone or with other proteins in a complex, to control the rate of transcription of genetic information from DNA to messenger RNA by promoting (serving as an activator) or blocking (serving as a repressor) the recruitment of RNA polymerase. [3] [4] [5] [6] [7] As a class of protein, general transcription factors bind to promoters along the DNA sequence or form a large transcription preinitiation complex to activate transcription. General transcription factors are necessary for transcription to occur. [8] [9] [10]
In bacteria, transcription initiation requires an RNA polymerase and a single GTF: sigma factor.
In archaea and eukaryotes, transcription initiation requires an RNA polymerase and a set of multiple GTFs to form a transcription preinitiation complex. Transcription initiation by eukaryotic RNA polymerase II involves the following GTFs: [7] [11]
A sigma factor is a protein needed only for initiation of RNA synthesis in bacteria. [12] Sigma factors provide promoter recognition specificity to the RNA polymerase (RNAP) and contribute to DNA strand separation, then dissociating from the RNA polymerase core enzyme following transcription initiation. [13] The RNA polymerase core associates with the sigma factor to form RNA polymerase holoenzyme. Sigma factor reduces the affinity of RNA polymerase for nonspecific DNA while increasing specificity for promoters, allowing transcription to initiate at correct sites. The core enzyme of RNA polymerase has five subunits (protein subunits) (~400 kDa). [14] Because of the RNA polymerase association with sigma factor, the complete RNA polymerase therefore has 6 subunits: the sigma subunit-in addition to the two alpha (α), one beta (β), one beta prime (β'), and one omega (ω) subunits that make up the core enzyme(~450 kDa). In addition, many bacteria can have multiple alternative σ factors. The level and activity of the alternative σ factors are highly regulated and can vary depending on environmental or developmental signals. [15]
The transcription preinitiation complex is a large complex of proteins that is necessary for the transcription of protein-coding genes in eukaryotes and archaea. It attaches to the promoter of the DNA (e.i., TATA box) and helps position the RNA polymerase II to the gene transcription start sites, denatures the DNA, and then starts transcription. [7] [16] [17] [18]
The assembly of transcription preinitiation complex follows these steps:
In molecular biology, the TATA box is a sequence of DNA found in the core promoter region of genes in archaea and eukaryotes. The bacterial homolog of the TATA box is called the Pribnow box which has a shorter consensus sequence.
The preinitiation complex is a complex of approximately 100 proteins that is necessary for the transcription of protein-coding genes in eukaryotes and archaea. The preinitiation complex positions RNA polymerase II at gene transcription start sites, denatures the DNA, and positions the DNA in the RNA polymerase II active site for transcription.
The TATA-binding protein (TBP) is a general transcription factor that binds specifically to a DNA sequence called the TATA box. This DNA sequence is found about 30 base pairs upstream of the transcription start site in some eukaryotic gene promoters.
Transcription factor II D (TFIID) is one of several general transcription factors that make up the RNA polymerase II preinitiation complex. RNA polymerase II holoenzyme is a form of eukaryotic RNA polymerase II that is recruited to the promoters of protein-coding genes in living cells. It consists of RNA polymerase II, a subset of general transcription factors, and regulatory proteins known as SRB proteins. Before the start of transcription, the transcription Factor II D (TFIID) complex binds to the core promoter DNA of the gene through specific recognition of promoter sequence motifs, including the TATA box, Initiator, Downstream Promoter, Motif Ten, or Downstream Regulatory elements.
Eukaryotic transcription is the elaborate process that eukaryotic cells use to copy genetic information stored in DNA into units of transportable complementary RNA replica. Gene transcription occurs in both eukaryotic and prokaryotic cells. Unlike prokaryotic RNA polymerase that initiates the transcription of all different types of RNA, RNA polymerase in eukaryotes comes in three variations, each translating a different type of gene. A eukaryotic cell has a nucleus that separates the processes of transcription and translation. Eukaryotic transcription occurs within the nucleus where DNA is packaged into nucleosomes and higher order chromatin structures. The complexity of the eukaryotic genome necessitates a great variety and complexity of gene expression control.
Transcription factor TFIIA is a nuclear protein involved in the RNA polymerase II-dependent transcription of DNA. TFIIA is one of several general (basal) transcription factors (GTFs) that are required for all transcription events that use RNA polymerase II. Other GTFs include TFIID, a complex composed of the TATA binding protein TBP and TBP-associated factors (TAFs), as well as the factors TFIIB, TFIIE, TFIIF, and TFIIH. Together, these factors are responsible for promoter recognition and the formation of a transcription preinitiation complex (PIC) capable of initiating RNA synthesis from a DNA template.
Transcription factor II B (TFIIB) is a general transcription factor that is involved in the formation of the RNA polymerase II preinitiation complex (PIC) and aids in stimulating transcription initiation. TFIIB is localised to the nucleus and provides a platform for PIC formation by binding and stabilising the DNA-TBP complex and by recruiting RNA polymerase II and other transcription factors. It is encoded by the TFIIB gene, and is homologous to archaeal transcription factor B and analogous to bacterial sigma factors.
Transcription factor II E (TFIIE) is one of several general transcription factors that make up the RNA polymerase II preinitiation complex. It is a tetramer of two alpha and two beta chains and interacts with TAF6/TAFII80, ATF7IP, and varicella-zoster virus IE63 protein.
Transcription factor II F (TFIIF) is one of several general transcription factors that make up the RNA polymerase II preinitiation complex.
Transcription initiation factor TFIID subunit 6 is a protein that in humans is encoded by the TAF6 gene.
Transcription initiation factor TFIID subunit 7 also known as TAFII55 is a protein that in humans is encoded by the TAF7 gene.
Transcription initiation factor TFIID subunit 4 is a protein that in humans is encoded by the TAF4 gene.
Transcription initiation factor TFIID subunit 2 is a protein that in humans is encoded by the TAF2 gene.
Transcription initiation factor TFIID subunit 10 is a protein that in humans is encoded by the TAF10 gene.
Transcription initiation factor TFIID subunit 5 is a protein that in humans is encoded by the TAF5 gene.
Transcription initiation factor TFIID subunit 11 also known as TAFII28, is a protein that in humans is encoded by the TAF11 gene.
TATA-binding protein-associated factor 2N is a protein that in humans is encoded by the TAF15 gene.
Transcription initiation factor TFIID subunit 13 is a protein that in humans is encoded by the TAF13 gene.
RNA polymerase II holoenzyme is a form of eukaryotic RNA polymerase II that is recruited to the promoters of protein-coding genes in living cells. It consists of RNA polymerase II, a subset of general transcription factors, and regulatory proteins known as SRB proteins.
Archaeal transcription factor B is a protein family of extrinsic transcription factors that guide the initiation of RNA transcription in organisms that fall under the domain of Archaea. It is homologous to eukaryotic TFIIB and, more distantly, to bacterial sigma factor. Like these proteins, it is involved in forming transcription preinitiation complexes. Its structure includes several conserved motifs which interact with DNA and other transcription factors, notably the single type of RNA polymerase that performs transcription in Archaea.