GATA2

Last updated
GATA2
PDB 1gnf EBI.jpg
Identifiers
Aliases GATA2 , DCML, IMD21, MONOMAC, NFE1B, GATA binding protein 2
External IDs OMIM: 137295 MGI: 95662 HomoloGene: 32030 GeneCards: GATA2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_032638
NM_001145661
NM_001145662

NM_008090
NM_001355253

RefSeq (protein)

NP_001139133
NP_001139134
NP_116027

NP_032116
NP_001342182

Location (UCSC) Chr 3: 128.48 – 128.49 Mb Chr 6: 88.17 – 88.18 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

GATA2 or GATA-binding factor 2 is a transcription factor, i.e. a nuclear protein which regulates the expression of genes. [5] It regulates many genes that are critical for the embryonic development, self-renewal, maintenance, and functionality of blood-forming, lympathic system-forming, and other tissue-forming stem cells. GATA2 is encoded by the GATA2 gene, a gene which often suffers germline and somatic mutations which lead to a wide range of familial and sporadic diseases, respectively. The gene and its product are targets for the treatment of these diseases. [6] [7]

Contents

Inactivating mutations of the GATA2 gene cause a reduction in the cellular levels of GATA2 and the development of a wide range of familial hematological, immunological, lymphatic, and/or other disorders that are grouped together into a common disease termed GATA2 deficiency. Less commonly, these disorders are associated with non-familial (i.e. sporadic or acquired) GATA inactivating mutations. GATA2 deficiency often begins with seemingly benign abnormalities but if untreated progresses to life-threatening opportunistic infections, virus-induced cancers, lung failure, the myelodysplastic syndrome (i.e. MDS), and/or acute myeloid leukemia, principally acute myeloid leukemia (AML), less commonly chronic myelomonocytic leukemia (CMML), and rarely a lymphoid leukemia. [6] [7]

Overexpression of the GATA2 transcription factor that is not due to mutations in the GATA2 gene appears to be a secondary factor that promotes the aggressiveness of non-familial EVI1 positive AML as well as the progression of prostate cancer. [8] [9] [10] [11]

GATA2 gene

The GATA2 gene is a member of the evolutionarily conserved GATA transcription factor gene family. All vertebrate species tested so far, including humans and mice, express 6 GATA genes, GATA1 through GATA6. [12] The human GATA2 gene is located on the long (or "q") arm of chromosome 3 at position 21.3 (i.e. the 3q21.3 locus) and consists of 8 exons. [13] Two sites, termed C-ZnF and N-ZnF, of the gene code for two Zinc finger structural motifs of the GATA2 transcription factor. These sites are critical for regulating the ability of the transcription factor to stimulate its target genes. [14] [15]

The GATA2 gene has at least five separate sites which bind nuclear factors that regulate its expression. One particularly important such site is located in intron 4. This site, termed the 9.5 kb enhancer, is located 9.5 kilobases (i.e. kb) down-stream from the gene's transcript initiation site and is a critically important enhancer of the gene's expression. [14] Regulation of GATA2 expression is highly complex. For example, in hematological stem cells, GATA2 transcription factor itself binds to one of these sites and in doing so is part of functionally important positive feedback autoregulation circuit wherein the transcription factor acts to promote its own production; in a second example of a positive feed back circuit, GATA2 stimulates production of Interleukin 1 beta and CXCL2 which act indirectly to simulate GATA2 expression. In an example of a negative feedback circuit, the GATA2 transcription factor indirectly causes activation of the G protein coupled receptor, GPR65, which then acts, also indirectly, to repress GATA2 gene expression. [14] [15] In a second example of negative feed-back, GATA2 transcription factor stimulates the expression of the GATA1 transcription factor which in turn can displace GATA2 transcription factor from its gene-stimulating binding sites thereby limiting GATA2's actions. [16]

The human GATA2 gene is expressed in hematological bone marrow cells at the stem cell and later progenitor cell stages of their development. Increases and/or decreases in the gene's expression regulate the self-renewal, survival, and progression of these immature cells toward their final mature forms viz., erythrocytes, certain types of lymphocytes (i.e. B cells, NK cells, and T helper cells), monocytes, neutrophils, platelets, plasmacytoid dendritic cells, macrophages and mast cells. [14] [17] [18] The gene is likewise critical for the formation of the lymphatic system, particularly for the development of its valves. The human gene is also expressed in endothelium, some non-hematological stem cells, the central nervous system, and, to lesser extents, prostate, endometrium, and certain cancerous tissues. [6] [12] [14]

The Gata2 gene in mice has a structure similar to its human counterpart, Deletion of both parental Gata2 genes in mice is lethal by day 10 of embryogenesis due to a total failure in the formation of mature blood cells. Inactivation of one mouse Gata2 gene is neither lethal nor associated with most of the signs of human GATA2 deficiency; however, these animals do show a ~50% reduction in their hematopoietic stem cells along with a reduced ability to repopulate the bone marrow of mouse recipients. The latter findings, human clinical studies, and experiments on human tissues support the conclusion that in humans both parental GATA2 genes are required for sufficient numbers of hematopoietic stem cells to emerge from the hemogenic endothelium during embryogenesis and for these cells and subsequent progenitor cells to survive, self-renew, and differentiate into mature cells. [14] [17] [19] As GATA2 deficient individuals age, their deficiency in hematopoietic stem cells worsens, probably as a result of factors such as infections or other stresses. In consequence, the signs and symptoms of their disease appear and/or become progressively more severe. [9] The role of GATA2 deficiency in leading to any of the leukemia types is not understood. Likewise, the role of GATA2 overexpression in non-familial AML as well as development of the blast crisis in chronic myelogenous leukemia and progression of prostate cancer is not understood. [9] [15]

Mutations

Scores of different types of inactivating GATA mutations have been associated with GATA2 deficiency; these include frameshift, point, insertion, splice site and deletion mutations scattered throughout the gene but concentrated in the region encoding the GATA2 transcription factor's C-ZnF, N-ZnF, and 9.5 kb sites. Rare cases of GATA2 deficiency involve large mutational deletions that include the 3q21.3 locus plus contiguous adjacent genes; these mutations seem more likely than other types of GATA mutations to cause increased susceptibilities to viral infections, developmental lymphatic disorders, and neurological disturbances. [6] [17]

One GATA2 mutation is a gain of function type, i.e. it is associated with an increase in the activity rather than levels of GATA2. This mutation substitutes valine for leucine in the 359 amino acid position (i.e. within the N-ZnF site) of the transcription factor and has been detected in individuals undergoing the blast crisis of chronic myelogenous leukemia. [9] [20]

Pathological inhibition

Analyses of individuals with AML have discovered many cases of GATA2 deficiency in which one parental GATA2 gene was not mutated but silenced by hypermethylation of its gene promoter. Further studies are required to integrate this hypermethylation-induced form of GATA2 deficiency into the diagnostic category of GATA2 deficiency. [19]

Pathological stimulation

Non-mutational stimulation of GATA2 expression and consequential aggressiveness in EVI1-positive AML appears due to the ability of EVI1, a transcription factor, to directly stimulate the expression of the GATA2 gene. [10] [11] The reason for the overexpression of GATA2 that begins in the early stages of prostate cancer is unclear but may involve the ability of FOXA1 to act indirect to stimulate the expression of the GATA2 gene. [11]

GATA2

The full length GATA2 transcription factor is a moderately sized protein consisting of 480 amino acids. Of its two zinc fingers, C-ZnF (located toward the protein's C-terminus) is responsible for binding to specific DNA sites while its N-ZnF (located toward the proteins N-terminus) is responsible for interacting with various other nuclear proteins that regulate its activity. The transcription factor also contains two transactivation domains and one negative regulatory domain which interact with other nuclear proteins to up-regulate and down-regulate, respectively, its activity. [14] [21] In promoting embryonic and/or adult-type haematopoiesis (i.e. maturation of hematological and immunological cells), GATA2 interacts with other transcription factors (viz., RUNX1, SCL/TAL1, GFI1, GFI1b, MYB, IKZF1, Transcription factor PU.1, LYL1) and cellular receptors (viz., MPL, GPR56). [15] In a wide range of tissues, GATA2 similarly interacts with HDAC3, [22] LMO2, [23] POU1F1, [24] POU5F1, [25] PML [26] SPI1, [27] and ZBTB16. [28]

GATA2 binds to a specific nucleic acid sequence viz., (T/A(GATA)A/G), on the promoter and enhancer sites of its target genes and in doing so either stimulates or suppresses the expression of these target genes. However, there are thousands of sites in human DNA with this nucleotide sequence but for unknown reasons GATA2 binds to <1% of these. Furthermore, all members of the GATA transcription factor family bind to this same nucleotide sequence and in doing so may in certain instances serve to interfere with GATA2 binding or even displace the GATA2 that is already bound to these sites. For example, displacement of GATA2 bond to this sequence by the GATA1 transcription factor appears important for the normal development of some types of hematological stem cells. This displacement phenomenon is termed the "GATA switch". In all events, the actions of GATA2, particularly with referenced to its interactions with many other gene-regulating factors, in controlling its target genes is extremely complex and not fully understood. [6] [14] [15] [16]

Inactivating GATA2 mutations

Familial and sporadic inactivating mutations in one of the two parental GATA2 genes causes a reduction, i.e. a haploinsufficiency, in the cellular levels of the GATA2 transcription factor. In consequence, individuals commonly develop a disease termed GATA2 deficiency. GATA2 deficiency is a grouping of various clinical presentations in which GATA2 haploinsufficiency results in the development over time of hematological, immunological, lymphatic, and/or other presentations that may begin as apparently benign abnormalities but commonly progress to life-threatening opportunistic infections, virus infection-induced cancers, the myelodysplastic syndrome, and/or leukemias, particularly AML. [6] [7] The various presentations of GATA2 deficiency include all cases of Monocytopenia and Mycobacterium Avium Complex/Dendritic Cell Monocyte, B and NK Lymphocyte deficiency (i.e. MonoMAC) and the Emberger syndrome as well as a significant percentage of cases of familial myelodysplastic syndrome/acute myeloid leukemia, congenital neutropenia, chronic myelomonocytic leukemia, aplastic anemia, and several other presentations. [6] [7] [29] [30]

Activating GATA2 mutation

The L359V gain of function mutation (see above section on mutation) increases the activity of the GATA2 transcription factor. The mutation occurs during the blast crisis of chronic myelogenous leukemia and is proposed to play a role in the transformation of the chronic and/or accelerated phases of this disease to its blast crisis phase. [9] [20]

Repression of GATA2

The repression of GATA2 expression due to methylation of promoter sites in the GATA2 gene rather than a mutation in this gene has been suggested to be an alternate cause for the GATA2 deficiency syndrome. [19] This epigenetic gene silencing also occurs in certain types of non-small-cell lung carcinoma and is suggested to have a protective effect on progression of the disease. [21] [31]

Overexpression of GATA2

Elevated levels of GATA2 transcription factor due to overexpression of its gene GATA2 is a common finding in AML. It is associated with a poor prognosis, appears to promote progression of the disease, and therefore proposed to be a target for therapeutic intervention. This overexpression is not due to mutation but rather caused at least in part by the overexpression of EVI1, a transcription factor that stimulates GATA2 expression. [8] GATA2 overexpression also occurs in prostate cancer where it appears to increase metastasis in the early stages of androgen-dependent disease and to stimulate prostate cancer cell survival and proliferation through activating by an unknown mechanism the androgen pathway in androgen-independent (i.e. castration-resistant) disease). [10] [11]

See also

Related Research Articles

Severe congenital neutropenia (SCN), also often known as Kostmann syndrome or disease, is a group of rare disorders that affect myelopoiesis, causing a congenital form of neutropenia, usually without other physical malformations. SCN manifests in infancy with life-threatening bacterial infections. It causes severe pyogenic infections. It can be caused by autosomal dominant inheritance of the ELANE gene, autosomal recessive inheritance of the HAX1 gene. There is an increased risk of leukemia and myelodysplastic cancers.

<span class="mw-page-title-main">GATA1</span> Protein-coding gene in humans

GATA-binding factor 1 or GATA-1 is the founding member of the GATA family of transcription factors. This protein is widely expressed throughout vertebrate species. In humans and mice, it is encoded by the GATA1 and Gata1 genes, respectively. These genes are located on the X chromosome in both species.

<span class="mw-page-title-main">CD135</span> Protein-coding gene in the species Homo sapiens

Cluster of differentiation antigen 135 (CD135) also known as fms like tyrosine kinase 3, receptor-type tyrosine-protein kinase FLT3, or fetal liver kinase-2 (Flk2) is a protein that in humans is encoded by the FLT3 gene. FLT3 is a cytokine receptor which belongs to the receptor tyrosine kinase class III. CD135 is the receptor for the cytokine Flt3 ligand (FLT3L).

<span class="mw-page-title-main">ETV6</span> Protein-coding gene in the species Homo sapiens

ETV6 protein is a transcription factor that in humans is encoded by the ETV6 gene. The ETV6 protein regulates the development and growth of diverse cell types, particularly those of hematological tissues. However, its gene, ETV6 frequently suffers various mutations that lead to an array of potentially lethal cancers, i.e., ETV6 is a clinically significant proto-oncogene in that it can fuse with other genes to drive the development and/or progression of certain cancers. However, ETV6 is also an anti-oncogene or tumor suppressor gene in that mutations in it that encode for a truncated and therefore inactive protein are also associated with certain types of cancers.

<span class="mw-page-title-main">RUNX1</span> Protein-coding gene in humans

Runt-related transcription factor 1 (RUNX1) also known as acute myeloid leukemia 1 protein (AML1) or core-binding factor subunit alpha-2 (CBFA2) is a protein that in humans is encoded by the RUNX1 gene.

<span class="mw-page-title-main">MN1 (gene)</span> Protein-coding gene in the species Homo sapiens

MN1 is a gene found on human chromosome 22, with gene map locus 22q12.3-qter. Its official full name is meningioma 1 because it is disrupted by a balanced translocation (4;22) in a meningioma.

<span class="mw-page-title-main">Wilms tumor protein</span> Transcription factor gene involved in the urogenital system

Wilms tumor protein (WT33) is a protein that in humans is encoded by the WT1 gene on chromosome 11p.

<span class="mw-page-title-main">HOXA9</span> Protein-coding gene in humans

Homeobox protein Hox-A9 is a protein that in humans is encoded by the HOXA9 gene.

<span class="mw-page-title-main">CEBPA</span> Protein-coding gene in the species Homo sapiens

CCAAT/enhancer-binding protein alpha is a protein encoded by the CEBPA gene in humans. CCAAT/enhancer-binding protein alpha is a transcription factor involved in the differentiation of certain blood cells. For details on the CCAAT structural motif in gene enhancers and on CCAAT/Enhancer Binding Proteins see the specific page.

<span class="mw-page-title-main">SPI1</span> Protein-coding gene in the species Homo sapiens

Transcription factor PU.1 is a protein that in humans is encoded by the SPI1 gene.

<span class="mw-page-title-main">HOXB6</span> Protein-coding gene in the species Homo sapiens

Homeobox protein Hox-B6 is a protein that in humans is encoded by the HOXB6 gene.

<span class="mw-page-title-main">CEBPE</span> Protein-coding gene in the species Homo sapiens

CCAAT/enhancer binding protein (C/EBP), epsilon, also known as CEBPE and CRP1, is a type of ccaat-enhancer-binding protein. CEBPE is its human gene and is pro-apoptotic.

<span class="mw-page-title-main">MECOM</span> Protein-coding gene in the species Homo sapiens

MDS1 and EVI1 complex locus protein EVI1 (MECOM) also known as ecotropic virus integration site 1 protein homolog (EVI-1) or positive regulatory domain zinc finger protein 3 (PRDM3) is a protein that in humans is encoded by the MECOM gene. EVI1 was first identified as a common retroviral integration site in AKXD murine myeloid tumors. It has since been identified in a plethora of other organisms, and seems to play a relatively conserved developmental role in embryogenesis. EVI1 is a nuclear transcription factor involved in many signaling pathways for both coexpression and coactivation of cell cycle genes.

<span class="mw-page-title-main">PHF6</span> Protein-coding gene in the species Homo sapiens

PHD finger protein 6 is a protein that in humans is encoded by the PHF6 gene.

MonoMAC syndrome is a rare autosomal dominant syndrome associated with: monocytopenia, B and NK cell lymphopenia; mycobacterial, viral, fungal, and bacterial opportunistic infections; and virus infection-induced cancers. The disorder often progresses to the development of myelodysplasia, myeloid leukemias, and other types of cancer. MonoMAC is a life-threatening and precancerous disorder.

AI-10-49 is a small molecule inhibitor of leukemic oncoprotein CBFβ-SMHHC developed by the laboratory of John Bushweller with efficacy demonstrated by the laboratories of Lucio H. Castilla and Monica Guzman. AI-10-49 allosterically binds to CBFβ-SMMHC and disrupts protein-protein interaction between CBFβ-SMMHC and tumor suppressor RUNX1. This inhibitor is under development as an anti-leukemic drug.

<span class="mw-page-title-main">Musashi-2</span> Protein-coding gene in the species Homo sapiens

Musashi-2, also known as Musashi RNA binding protein 2, is a protein that in humans is encoded by the MSI2 gene. Like its homologue musashi-1 (MSI1), it is an RNA-binding protein involved in stemness.

Clonal hypereosinophilia, also termed primary hypereosinophilia or clonal eosinophilia, is a grouping of hematological disorders all of which are characterized by the development and growth of a pre-malignant or malignant population of eosinophils, a type of white blood cell that occupies the bone marrow, blood, and other tissues. This population consists of a clone of eosinophils, i.e. a group of genetically identical eosinophils derived from a sufficiently mutated ancestor cell.

<span class="mw-page-title-main">Emberger syndrome</span> Medical condition

The Emberger syndrome is a rare, autosomal dominant, genetic disorder caused by familial or sporadic inactivating mutations in one of the two parental GATA2 genes. The mutation results in a haploinsufficiency in the levels of the gene's product, the GATA2 transcription factor. This transcription factor is critical for the embryonic development, maintenance, and functionality of blood-forming, lympathic-forming, and other tissues. The syndrome includes as its primary symptoms: serious abnormalities of the blood such as the myelodysplastic syndrome and acute myeloid leukemia; lymphedema of the lower limbs, and sensorineural hearing loss. However, the anomalies caused by GATA2 mutations are highly variable with some individuals showing little or no such symptoms even in old age while others exhibit non-malignant types of hematological anomalies; lymphedema in areas besides the lower limbs, little or no hearing loss; or anomalies in other tissues. The syndrome may present with relatively benign signs and/or symptoms and then progress rapidly or slowly to the myelodysplastic syndrome and/or acute myeloid leukemia. Alternatively, it may present with one of the latter two life-threatening disorders.

GATA2 deficiency is a grouping of several disorders caused by common defect, namely, familial or sporadic inactivating mutations in one of the two parental GATA2 genes. Being the gene haploinsufficient, mutations that cause a reduction in the cellular levels of the gene's product, GATA2, are autosomal dominant. The GATA2 protein is a transcription factor critical for the embryonic development, maintenance, and functionality of blood-forming, lymphatic-forming, and other tissue-forming stem cells. In consequence of these mutations, cellular levels of GATA2 are deficient and individuals develop over time hematological, immunological, lymphatic, or other presentations that may begin as apparently benign abnormalities but commonly progress to severe organ failure, opportunistic infections, virus infection-induced cancers, the myelodysplastic syndrome, and/or leukemia. GATA2 deficiency is a life-threatening and precancerous condition.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000179348 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000015053 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Lee ME, Temizer DH, Clifford JA, Quertermous T (25 August 1991). "Cloning of the GATA-binding protein that regulates endothelin-1 gene expression in endothelial cells". J. Biol. Chem. 266 (24): 16188–92. doi: 10.1016/S0021-9258(18)98533-9 . PMID   1714909. Archived from the original on 30 May 2008. Retrieved 2 August 2008.
  6. 1 2 3 4 5 6 7 Crispino JD, Horwitz MS (April 2017). "GATA factor mutations in hematologic disease". Blood. 129 (15): 2103–2110. doi:10.1182/blood-2016-09-687889. PMC   5391620 . PMID   28179280.
  7. 1 2 3 4 Hirabayashi S, Wlodarski MW, Kozyra E, Niemeyer CM (August 2017). "Heterogeneity of GATA2-related myeloid neoplasms". International Journal of Hematology. 106 (2): 175–182. doi: 10.1007/s12185-017-2285-2 . PMID   28643018.
  8. 1 2 Vicente C, Vazquez I, Conchillo A, García-Sánchez MA, Marcotegui N, Fuster O, González M, Calasanz MJ, Lahortiga I, Odero MD (March 2012). "Overexpression of GATA2 predicts an adverse prognosis for patients with acute myeloid leukemia and it is associated with distinct molecular abnormalities". Leukemia. 26 (3): 550–4. doi: 10.1038/leu.2011.235 . PMID   21904383.
  9. 1 2 3 4 5 Mir MA, Kochuparambil ST, Abraham RS, Rodriguez V, Howard M, Hsu AP, Jackson AE, Holland SM, Patnaik MM (April 2015). "Spectrum of myeloid neoplasms and immune deficiency associated with germline GATA2 mutations". Cancer Medicine. 4 (4): 490–9. doi:10.1002/cam4.384. PMC   4402062 . PMID   25619630.
  10. 1 2 3 Rodriguez-Bravo V, Carceles-Cordon M, Hoshida Y, Cordon-Cardo C, Galsky MD, Domingo-Domenech J (January 2017). "The role of GATA2 in lethal prostate cancer aggressiveness". Nature Reviews. Urology. 14 (1): 38–48. doi:10.1038/nrurol.2016.225. PMC   5489122 . PMID   27872477.
  11. 1 2 3 4 Obinata D, Takayama K, Takahashi S, Inoue S (February 2017). "Crosstalk of the Androgen Receptor with Transcriptional Collaborators: Potential Therapeutic Targets for Castration-Resistant Prostate Cancer". Cancers. 9 (3): 22. doi: 10.3390/cancers9030022 . PMC   5366817 . PMID   28264478.
  12. 1 2 Chlon TM, Crispino JD (November 2012). "Combinatorial regulation of tissue specification by GATA and FOG factors". Development. 139 (21): 3905–16. doi:10.1242/dev.080440. PMC   3472596 . PMID   23048181.
  13. "GATA2 GATA binding protein 2 [Homo sapiens (human)] - Gene - NCBI".
  14. 1 2 3 4 5 6 7 8 Wlodarski MW, Collin M, Horwitz MS (April 2017). "GATA2 deficiency and related myeloid neoplasms". Seminars in Hematology. 54 (2): 81–86. doi:10.1053/j.seminhematol.2017.05.002. PMC   5650112 . PMID   28637621.
  15. 1 2 3 4 5 Katsumura KR, Bresnick EH (April 2017). "The GATA factor revolution in hematology". Blood. 129 (15): 2092–2102. doi:10.1182/blood-2016-09-687871. PMC   5391619 . PMID   28179282.
  16. 1 2 Shimizu R, Yamamoto M (August 2016). "GATA-related hematologic disorders". Experimental Hematology. 44 (8): 696–705. doi: 10.1016/j.exphem.2016.05.010 . PMID   27235756.
  17. 1 2 3 Spinner MA, Sanchez LA, Hsu AP, Shaw PA, Zerbe CS, Calvo KR, Arthur DC, Gu W, Gould CM, Brewer CC, Cowen EW, Freeman AF, Olivier KN, Uzel G, Zelazny AM, Daub JR, Spalding CD, Claypool RJ, Giri NK, Alter BP, Mace EM, Orange JS, Cuellar-Rodriguez J, Hickstein DD, Holland SM (February 2014). "GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity". Blood. 123 (6): 809–21. doi:10.1182/blood-2013-07-515528. PMC   3916876 . PMID   24227816.
  18. Bigley V, Cytlak U, Collin M (February 2018). "Human dendritic cell immunodeficiencies". Seminars in Cell & Developmental Biology. 86: 50–61. doi:10.1016/j.semcdb.2018.02.020. PMID   29452225. S2CID   3557136.
  19. 1 2 3 Hsu AP, McReynolds LJ, Holland SM (February 2015). "GATA2 deficiency". Current Opinion in Allergy and Clinical Immunology. 15 (1): 104–9. doi:10.1097/ACI.0000000000000126. PMC   4342850 . PMID   25397911.
  20. 1 2 Zhang SJ, Ma LY, Huang QH, Li G, Gu BW, Gao XD, Shi JY, Wang YY, Gao L, Cai X, Ren RB, Zhu J, Chen Z, Chen SJ (February 2008). "Gain-of-function mutation of GATA-2 in acute myeloid transformation of chronic myeloid leukemia". Proceedings of the National Academy of Sciences of the United States of America. 105 (6): 2076–81. Bibcode:2008PNAS..105.2076Z. doi: 10.1073/pnas.0711824105 . PMC   2538883 . PMID   18250304.
  21. 1 2 Fujiwara T (June 2017). "GATA Transcription Factors: Basic Principles and Related Human Disorders". The Tohoku Journal of Experimental Medicine. 242 (2): 83–91. doi: 10.1620/tjem.242.83 . PMID   28566565.
  22. Ozawa Y, Towatari M, Tsuzuki S, Hayakawa F, Maeda T, Miyata Y, Tanimoto M, Saito H (October 2001). "Histone deacetylase 3 associates with and represses the transcription factor GATA-2". Blood. 98 (7): 2116–23. doi: 10.1182/blood.v98.7.2116 . PMID   11567998.
  23. Osada H, Grutz G, Axelson H, Forster A, Rabbitts TH (October 1995). "Association of erythroid transcription factors: complexes involving the LIM protein RBTN2 and the zinc-finger protein GATA1". Proc. Natl. Acad. Sci. U.S.A. 92 (21): 9585–9. Bibcode:1995PNAS...92.9585O. doi: 10.1073/pnas.92.21.9585 . PMC   40846 . PMID   7568177.
  24. Dasen JS, O'Connell SM, Flynn SE, Treier M, Gleiberman AS, Szeto DP, Hooshmand F, Aggarwal AK, Rosenfeld MG (May 1999). "Reciprocal interactions of Pit1 and GATA2 mediate signaling gradient-induced determination of pituitary cell types". Cell. 97 (5): 587–98. doi: 10.1016/s0092-8674(00)80770-9 . PMID   10367888. S2CID   15737684.
  25. Fogarty NM, McCarthy A, Snijders KE, Powell BE, Kubikova N, Blakeley P, Lea R, Elder K, Wamaitha SE, Kim D, Maciulyte V, Kleinjung J, Kim JS, Wells D, Vallier L, Bertero A, Turner JM, Niakan KK (Oct 2017). "Genome editing reveals a role for OCT4 in human embryogenesis". Nature. 550 (7674): 67–73. Bibcode:2017Natur.550...67F. doi:10.1038/nature24033. PMC   5815497 . PMID   28953884.
  26. Tsuzuki S, Towatari M, Saito H, Enver T (September 2000). "Potentiation of GATA-2 activity through interactions with the promyelocytic leukemia protein (PML) and the t(15;17)-generated PML-retinoic acid receptor alpha oncoprotein". Mol. Cell. Biol. 20 (17): 6276–86. doi:10.1128/mcb.20.17.6276-6286.2000. PMC   86102 . PMID   10938104.
  27. Zhang P, Behre G, Pan J, Iwama A, Wara-Aswapati N, Radomska HS, Auron PE, Tenen DG, Sun Z (July 1999). "Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1". Proc. Natl. Acad. Sci. U.S.A. 96 (15): 8705–10. Bibcode:1999PNAS...96.8705Z. doi: 10.1073/pnas.96.15.8705 . PMC   17580 . PMID   10411939.
  28. Tsuzuki S, Enver T (May 2002). "Interactions of GATA-2 with the promyelocytic leukemia zinc finger (PLZF) protein, its homologue FAZF, and the t(11;17)-generated PLZF-retinoic acid receptor alpha oncoprotein". Blood. 99 (9): 3404–10. doi: 10.1182/blood.v99.9.3404 . PMID   11964310. S2CID   35192406.
  29. Bannon SA, DiNardo CD (May 2016). "Hereditary Predispositions to Myelodysplastic Syndrome". International Journal of Molecular Sciences. 17 (6): 838. doi: 10.3390/ijms17060838 . PMC   4926372 . PMID   27248996.
  30. West AH, Godley LA, Churpek JE (March 2014). "Familial myelodysplastic syndrome/acute leukemia syndromes: a review and utility for translational investigations". Annals of the New York Academy of Sciences. 1310 (1): 111–8. Bibcode:2014NYASA1310..111W. doi:10.1111/nyas.12346. PMC   3961519 . PMID   24467820.
  31. Tessema M, Yingling CM, Snider AM, Do K, Juri DE, Picchi MA, Zhang X, Liu Y, Leng S, Tellez CS, Belinsky SA (June 2014). "GATA2 is epigenetically repressed in human and mouse lung tumors and is not requisite for survival of KRAS mutant lung cancer". Journal of Thoracic Oncology. 9 (6): 784–93. doi:10.1097/JTO.0000000000000165. PMC   4132640 . PMID   24807155.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.