RFX1

Last updated
RFX1
1dp7 biolunit.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases RFX1 , EFC, RFX, regulatory factor X1
External IDs OMIM: 600006 MGI: 105982 HomoloGene: 2189 GeneCards: RFX1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002918

NM_009055

RefSeq (protein)

NP_002909

NP_033081

Location (UCSC) Chr 19: 13.96 – 14.01 Mb Chr 8: 84.79 – 84.82 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

MHC class II regulatory factor RFX1 is a protein that, in humans, is encoded by the RFX1 gene located on the short arm of chromosome 19. [5] [6] [7]

Contents

Structure

The RFX1 gene is a member of the regulatory factor X (RFX) gene family, which encodes transcription factors that contain five conserved domains including a highly conserved, centrally located, winged helix DNA binding domain as well as a dimerization domain located in the C-terminal region of the sequence. [8] Apart from the five conserved domains, the RFX proteins diverge significantly. The DNA binding and dimerization domains of the RFX family proteins show no similarities to the other domains with the same functions in other proteins. [6]

Species distribution

The RFX protein family is conserved in S. pombe , S. cerevisiae , C. elegans , mice and humans. [9] There are seven known RFX proteins in humans, five in mice, and one in C. elegans as well as one in each of the two species of yeast. [9] [10]

Function

The protein encoded by this gene is structurally related to regulatory factors X2, X3, X4, and X5. It is a transcriptional activator that can bind DNA as a monomer or as a heterodimer with RFX family members X2, X3, and X5, but not with X4. This protein binds to the Xboxes of MHC class II genes and is essential for their expression. Also, it can bind to an inverted repeat that is required for expression of hepatitis B virus genes. [7] The RFX proteins were originally cloned and characterized due to their high affinity for a cis-acting promoter sequence, called the Xbox, found in all MHC class II genes. [6]

Levels of mRNA encoding this protein as well as RFX2 and RFX3 are found to be consistently elevated in the testis and are variable in other tissues throughout the body. [6]

RFX1 contains a C-terminal sequence with no apparent homology to other RFX proteins. This C-terminal tail contains an acidic region that is thought to aid in crossing the nuclear membrane. Two major functions are hypothesized to this exist for this domain: a contribution to the nuclear localization signal (NLS) as well as the contradictory down-regulation of DNA binding as well as nuclear association. These two functions were originally identified through sequence mutations and translational fusions with gfp (green fluorescent protein) and remain to be confirmed. [11]

Interactions

RFX1 has been shown to interact with Abl gene. [9]

Related Research Articles

Bare lymphocyte syndrome is a condition caused by mutations in certain genes of the major histocompatibility complex or involved with the processing and presentation of MHC molecules. It is a form of severe combined immunodeficiency.

<span class="mw-page-title-main">CIITA</span>

CIITA is a human gene which encodes a protein called the class II, major histocompatibility complex, transactivator. Mutations in this gene are responsible for the bare lymphocyte syndrome in which the immune system is severely compromised and cannot effectively fight infection. Chromosomal rearrangement of CIITA is involved in the pathogenesis of Hodgkin lymphoma and primary mediastinal B cell lymphoma.

<span class="mw-page-title-main">IRF3</span> Protein-coding gene in the species Homo sapiens

Interferon regulatory factor 3, also known as IRF3, is an interferon regulatory factor.

<span class="mw-page-title-main">REL</span> Protein-coding gene in the species Homo sapiens

The proto-oncogene c-Rel is a protein that in humans is encoded by the REL gene. The c-Rel protein is a member of the NF-κB family of transcription factors and contains a Rel homology domain (RHD) at its N-terminus and two C-terminal transactivation domains. c-Rel is a myeloid checkpoint protein that can be targeted for treating cancer. c-Rel has an important role in B-cell survival and proliferation. The REL gene is amplified or mutated in several human B-cell lymphomas, including diffuse large B-cell lymphoma and Hodgkin's lymphoma.

<span class="mw-page-title-main">NFYB</span> Protein-coding gene in the species Homo sapiens

Nuclear transcription factor Y subunit beta is a protein that in humans is encoded by the NFYB gene.

<span class="mw-page-title-main">CTBP1</span>

C-terminal-binding protein 1 also known as CtBP1 is a protein that in humans is encoded by the CTBP1 gene. CtBP1 is one of two CtBP proteins, the other protein being CtBP2.

<span class="mw-page-title-main">Myocyte-specific enhancer factor 2A</span> Protein-coding gene in the species Homo sapiens

Myocyte-specific enhancer factor 2A is a protein that in humans is encoded by the MEF2A gene. MEF2A is a transcription factor in the Mef2 family. In humans it is located on chromosome 15q26. Certain mutations in MEF2A cause an autosomal dominant form of coronary artery disease and myocardial infarction.

<span class="mw-page-title-main">RFX5</span> Protein-coding gene in the species Homo sapiens

DNA-binding protein RFX5 is a protein that in humans is encoded by the RFX5 gene.

<span class="mw-page-title-main">IRF8</span> Protein-coding gene in the species Homo sapiens

Interferon regulatory factor 8 (IRF8) also known as interferon consensus sequence-binding protein (ICSBP), is a protein that in humans is encoded by the IRF8 gene. IRF8 is a transcription factor that plays critical roles in the regulation of lineage commitment and in myeloid cell maturation including the decision for a common myeloid progenitor (CMP) to differentiate into a monocyte precursor cell.

<i>NFIC</i> (gene) Protein-coding gene in the species Homo sapiens

Nuclear factor 1 C-type is a protein that in humans is encoded by the NFIC gene.

<span class="mw-page-title-main">NFIX</span> Protein-coding gene in the species Homo sapiens

Nuclear factor 1 X-type is a protein that in humans is encoded by the NFIX gene. NFI-X3, a splice variant of NFIX, regulates Glial fibrillary acidic protein and YKL-40 in astrocytes.

<span class="mw-page-title-main">RFXANK</span> Protein-coding gene in the species Homo sapiens

DNA-binding protein RFXANK is a protein that in humans is encoded by the RFXANK gene.

<span class="mw-page-title-main">CREBL1</span> Protein-coding gene in the species Homo sapiens

CAMP responsive element binding protein-like 1, also known as CREBL1, is a protein which in humans is encoded by the CREBL1 gene.

<span class="mw-page-title-main">RFXAP</span>

Regulatory factor X-associated protein is a protein that in humans is encoded by the RFXAP gene.

<span class="mw-page-title-main">RFX2</span> Protein-coding gene in the species Homo sapiens

DNA-binding protein RFX2 is a protein that in humans is encoded by the RFX2 gene.

<span class="mw-page-title-main">RFX4</span> Protein-coding gene in the species Homo sapiens

Transcription factor RFX4 is a protein that in humans is encoded by the RFX4 gene.

<span class="mw-page-title-main">ZNF143</span> Protein-coding gene

Zinc finger protein 143 is a protein that in humans is encoded by the ZNF143 gene.

<span class="mw-page-title-main">RFX3</span> Protein-coding gene in the species Homo sapiens

Transcription factor RFX3 is a protein that in humans is encoded by the RFX3 gene.

<span class="mw-page-title-main">MED26</span> Protein-coding gene in the species Homo sapiens

Mediator of RNA polymerase II transcription subunit 26 is an enzyme that in humans is encoded by the MED26 gene. It forms part of the Mediator complex.

<span class="mw-page-title-main">RFX6</span> Transcription factor gene of the regulatory factor X family

Regulatory factor X, 6 also known as DNA-binding protein RFX6 is a protein that in humans is encoded by the RFX6 gene.

References

  1. 1 2 3 ENSG00000288283 GRCh38: Ensembl release 89: ENSG00000132005, ENSG00000288283 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000031706 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Pugliatti L, Derre J, Berger R, Ucla C, Reith W, Mach B (Sep 1992). "The genes for MHC class II regulatory factors RFX1 and RFX2 are located on the short arm of chromosome 19". Genomics. 13 (4): 1307–10. doi:10.1016/0888-7543(92)90052-T. PMID   1505960.
  6. 1 2 3 4 Reith W, Ucla C, Barras E, Gaud A, Durand B, Herrero-Sanchez C, Kobr M, Mach B (Feb 1994). "RFX1, a transactivator of hepatitis B virus enhancer I, belongs to a novel family of homodimeric and heterodimeric DNA-binding proteins". Mol Cell Biol. 14 (2): 1230–44. doi:10.1128/mcb.14.2.1230. PMC   358479 . PMID   8289803.
  7. 1 2 "Entrez Gene: RFX1 regulatory factor X, 1 (influences HLA class II expression)".
  8. Emery P, Durand B, Mach B, Reith W (March 1996). "RFX proteins, a novel family of DNA binding proteins conserved in the eukaryotic kingdom". Nucleic Acids Res. 24 (5): 803–7. doi:10.1093/nar/24.5.803. PMC   145730 . PMID   8600444.
  9. 1 2 3 Agami R, Shaul Y (April 1998). "The kinase activity of c-Abl but not v-Abl is potentiated by direct interaction with RFXI, a protein that binds the enhancers of several viruses and cell-cycle regulated genes". Oncogene. 16 (14): 1779–88. doi: 10.1038/sj.onc.1201708 . PMID   9583676.
  10. Aftab S, Semenec L, Chu JS, Chen N (2008). "Identification and characterization of novel human tissue-specific RFX transcription factors". BMC Evol. Biol. 8: 226. doi:10.1186/1471-2148-8-226. PMC   2533330 . PMID   18673564.
  11. Katan-Khaykovich Y, Shaul Y (May 2001). "Nuclear import and DNA-binding activity of RFX1. Evidence for an autoinhibitory mechanism". Eur. J. Biochem. 268 (10): 3108–16. doi: 10.1046/j.1432-1327.2001.02211.x . PMID   11358531.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.