Zinc finger and BTB domain-containing protein 16

Last updated
ZBTB16
Protein ZBTB16 PDB 1buo.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases ZBTB16 , PLZF, ZNF145, zinc finger and BTB domain containing 16
External IDs OMIM: 176797; MGI: 103222; HomoloGene: 21214; GeneCards: ZBTB16; OMA:ZBTB16 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001018011
NM_006006
NM_001354750
NM_001354751
NM_001354752

Contents

NM_001033324
NM_001364543

RefSeq (protein)

NP_001018011
NP_005997
NP_001341679
NP_001341680
NP_001341681

NP_001028496
NP_001351472

Location (UCSC) Chr 11: 114.06 – 114.26 Mb Chr 9: 48.57 – 48.75 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Zinc finger and BTB domain-containing protein 16 is a protein that in humans is encoded by the ZBTB16 gene.

Function

This gene is a member of the Krueppel C2H2-type zinc-finger protein family and encodes a zinc finger transcription factor that contains nine Kruppel-type zinc finger domains at the carboxyl terminus. This protein is located in the nucleus, is involved in cell cycle progression, and interacts with a histone deacetylase. Specific instances of aberrant gene rearrangement at this locus have been associated with acute promyelocytic leukemia (APL) [5] and physiological roles have been identified in mouse Natural Killer T cells [6] [7] and gamma-delta T cells. [8] Alternate transcriptional splice variants have been characterized in human. [9] [10]

Interactions

Zinc finger and BTB domain-containing protein 16 has been shown to interact with:

See also

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000109906 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000066687 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Chen Z, Brand NJ, Chen A, Chen SJ, Tong JH, Wang ZY, Waxman S, Zelent A (1993). "Fusion between a novel Krüppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia". The EMBO Journal. 12 (3): 1161–7. doi:10.1002/j.1460-2075.1993.tb05757.x. PMC   413318 . PMID   8384553.
  6. Kovalovsky D, Uche OU, Eladad S, Hobbs RM, Yi W, Alonzo E, Chua K, Eidson M, et al. (2008). "The BTB-zinc finger transcriptional regulator, PLZF, controls the development of iNKT cell effector functions". Nature Immunology. 9 (9): 1055–64. doi:10.1038/ni.1641. PMC   2662733 . PMID   18660811.
  7. Savage AK, Constantinides MG, Han J, Picard D, Martin E, Li B, Lantz O, Bendelac A (2008). "The transcription factor PLZF (Zbtb16) directs the effector program of the NKT cell lineage". Immunity. 29 (3): 391–403. doi:10.1016/j.immuni.2008.07.011. PMC   2613001 . PMID   18703361.
  8. Kreslavsky T, Savage AK, Hobbs R, Gounari F, Bronson R, Pereira P, Pandolfi PP, Bendelac A, von Boehmer H (2009). "TCR-inducible PLZF transcription factor required for innate phenotype of a subset of γδ T cells with restricted TCR diversity". Proceedings of the National Academy of Sciences of the United States of America. 106 (30): 12453–8. Bibcode:2009PNAS..10612453K. doi: 10.1073/pnas.0903895106 . PMC   2718370 . PMID   19617548.
  9. Zhang T, Xiong H, Kan LX, Zhang CK, Jiao XF, Fu G, Zhang QH, Lu L, et al. (1999). "Genomic sequence, structural organization, molecular evolution, and aberrant rearrangement of promyelocytic leukemia zinc finger gene". Proceedings of the National Academy of Sciences of the United States of America. 96 (20): 11422–7. Bibcode:1999PNAS...9611422Z. doi: 10.1073/pnas.96.20.11422 . PMC   18049 . PMID   10500192.
  10. "ZBTB16 zinc finger and BTB domain containing 16". Entrez . 4 October 2009. Retrieved 10 October 2009.
  11. Senbonmatsu T, Saito T, Landon EJ, Watanabe O, Price E, Roberts RL, Imboden H, Fitzgerald TG, et al. (2003). "A novel angiotensin II type 2 receptor signaling pathway: possible role in cardiac hypertrophy". EMBO J. 22 (24): 6471–82. doi:10.1093/emboj/cdg637. PMC   291832 . PMID   14657020.
  12. Dhordain P, Albagli O, Honore N, Guidez F, Lantoine D, Schmid M, The HD, Zelent A, Koken MH (2000). "Colocalization and heteromerization between the two human oncogene POZ/zinc finger proteins, LAZ3 (BCL6) and PLZF". Oncogene. 19 (54): 6240–50. doi:10.1038/sj.onc.1203976. PMID   11175338. S2CID   23619694.
  13. Barna M, Merghoub T, Costoya JA, Ruggero D, Branford M, Bergia A, Samori B, Pandolfi PP (2002). "Plzf mediates transcriptional repression of HoxD gene expression through chromatin remodeling". Dev. Cell. 3 (4): 499–510. doi: 10.1016/s1534-5807(02)00289-7 . PMID   12408802.
  14. 1 2 Ward JO, McConnell MJ, Carlile GW, Pandolfi PP, Licht JD, Freedman LP (2001). "The acute promyelocytic leukemia-associated protein, promyelocytic leukemia zinc finger, regulates 1,25-dihydroxyvitamin D(3)-induced monocytic differentiation of U937 cells through a physical interaction with vitamin D(3) receptor". Blood. 98 (12): 3290–300. doi: 10.1182/blood.v98.12.3290 . PMID   11719366.
  15. Puccetti E, Obradovic D, Beissert T, Bianchini A, Washburn B, Chiaradonna F, Boehrer S, Hoelzer D, et al. (2002). "AML-associated translocation products block vitamin D(3)-induced differentiation by sequestering the vitamin D(3) receptor". Cancer Res. 62 (23): 7050–8. PMID   12460926.
  16. McLoughlin P, Ehler E, Carlile G, Licht JD, Schäfer BW (2002). "The LIM-only protein DRAL/FHL2 interacts with and is a corepressor for the promyelocytic leukemia zinc finger protein". J. Biol. Chem. 277 (40): 37045–53. doi: 10.1074/jbc.M203336200 . PMID   12145280.
  17. Labbaye C, Quaranta MT, Pagliuca A, Militi S, Licht JD, Testa U, Peschle C (2002). "PLZF induces megakaryocytic development, activates Tpo receptor expression and interacts with GATA1 protein". Oncogene. 21 (43): 6669–79. doi: 10.1038/sj.onc.1205884 . PMID   12242665.
  18. Tsuzuki S, Enver T (2002). "Interactions of GATA-2 with the promyelocytic leukemia zinc finger (PLZF) protein, its homologue FAZF, and the t(11;17)-generated PLZF-retinoic acid receptor alpha oncoprotein". Blood. 99 (9): 3404–10. doi: 10.1182/blood.v99.9.3404 . PMID   11964310.
  19. 1 2 3 4 Chauchereau A, Mathieu M, de Saintignon J, Ferreira R, Pritchard LL, Mishal Z, Dejean A, Harel-Bellan A (2004). "HDAC4 mediates transcriptional repression by the acute promyelocytic leukaemia-associated protein PLZF". Oncogene. 23 (54): 8777–84. doi:10.1038/sj.onc.1208128. PMID   15467736. S2CID   26092755.
  20. 1 2 3 David G, Alland L, Hong SH, Wong CW, DePinho RA, Dejean A (1998). "Histone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein". Oncogene. 16 (19): 2549–56. doi:10.1038/sj.onc.1202043. PMID   9627120. S2CID   655636.
  21. 1 2 3 Wong CW, Privalsky ML (1998). "Components of the SMRT corepressor complex exhibit distinctive interactions with the POZ domain oncoproteins PLZF, PLZF-RARalpha, and BCL-6". J. Biol. Chem. 273 (42): 27695–702. doi: 10.1074/jbc.273.42.27695 . PMID   9765306.
  22. 1 2 Lemercier C, Brocard MP, Puvion-Dutilleul F, Kao HY, Albagli O, Khochbin S (2002). "Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor" (PDF). J. Biol. Chem. 277 (24): 22045–52. doi: 10.1074/jbc.M201736200 . PMID   11929873. S2CID   19024903.
  23. Nanba D, Mammoto A, Hashimoto K, Higashiyama S (2003). "Proteolytic release of the carboxy-terminal fragment of proHB-EGF causes nuclear export of PLZF". J. Cell Biol. 163 (3): 489–502. doi:10.1083/jcb.200303017. PMC   2173632 . PMID   14597771.
  24. Nanba D, Toki F, Higashiyama S (2004). "Roles of charged amino acid residues in the cytoplasmic domain of proHB-EGF". Biochem. Biophys. Res. Commun. 320 (2): 376–82. Bibcode:2004BBRC..320..376N. doi:10.1016/j.bbrc.2004.05.176. PMID   15219838.
  25. Takahashi S, McConnell MJ, Harigae H, Kaku M, Sasaki T, Melnick AM, Licht JD (2004). "The Flt3 internal tandem duplication mutant inhibits the function of transcriptional repressors by blocking interactions with SMRT". Blood. 103 (12): 4650–8. doi: 10.1182/blood-2003-08-2759 . PMID   14982881.
  26. Hong SH, David G, Wong CW, Dejean A, Privalsky ML (1997). "SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor alpha (RARalpha) and PLZF-RARalpha oncoproteins associated with acute promyelocytic leukemia". Proc. Natl. Acad. Sci. U.S.A. 94 (17): 9028–33. Bibcode:1997PNAS...94.9028H. doi: 10.1073/pnas.94.17.9028 . PMC   23013 . PMID   9256429.
  27. Koken MH, Reid A, Quignon F, Chelbi-Alix MK, Davies JM, Kabarowski JH, Zhu J, Dong S, et al. (1997). "Leukemia-associated retinoic acid receptor alpha fusion partners, PML and PLZF, heterodimerize and colocalize to nuclear bodies". Proc. Natl. Acad. Sci. U.S.A. 94 (19): 10255–60. Bibcode:1997PNAS...9410255K. doi: 10.1073/pnas.94.19.10255 . PMC   23349 . PMID   9294197.
  28. Melnick AM, Westendorf JJ, Polinger A, Carlile GW, Arai S, Ball HJ, Lutterbach B, Hiebert SW, Licht JD (2000). "The ETO protein disrupted in t(8;21)-associated acute myeloid leukemia is a corepressor for the promyelocytic leukemia zinc finger protein". Mol. Cell. Biol. 20 (6): 2075–86. doi:10.1128/mcb.20.6.2075-2086.2000. PMC   110824 . PMID   10688654.
  29. Melnick A, Carlile GW, McConnell MJ, Polinger A, Hiebert SW, Licht JD (2000). "AML-1/ETO fusion protein is a dominant negative inhibitor of transcriptional repression by the promyelocytic leukemia zinc finger protein". Blood. 96 (12): 3939–47. doi:10.1182/blood.V96.12.3939. PMID   11090081.
  30. Martin PJ, Delmotte MH, Formstecher P, Lefebvre P (2003). "PLZF is a negative regulator of retinoic acid receptor transcriptional activity". Nucl. Recept. 1 (1) 6. doi: 10.1186/1478-1336-1-6 . PMC   212040 . PMID   14521715.
  31. Hoatlin ME, Zhi Y, Ball H, Silvey K, Melnick A, Stone S, Arai S, Hawe N, et al. (1999). "A novel BTB/POZ transcriptional repressor protein interacts with the Fanconi anemia group C protein and PLZF". Blood. 94 (11): 3737–47. doi:10.1182/blood.V94.11.3737. PMID   10572087.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.