IRF8

Last updated
IRF8
Identifiers
Aliases IRF8 , H-ICSBP, ICSBP, ICSBP1, IMD32A, IMD32B, IRF-8, interferon regulatory factor 8
External IDs OMIM: 601565 MGI: 96395 HomoloGene: 1629 GeneCards: IRF8
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002163
NM_001363907
NM_001363908

NM_001301811
NM_008320

RefSeq (protein)

NP_002154
NP_001350836
NP_001350837

NP_001288740
NP_032346

Location (UCSC) Chr 16: 85.9 – 85.92 Mb Chr 8: 121.46 – 121.48 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Interferon regulatory factor 8 (IRF8) also known as interferon consensus sequence-binding protein (ICSBP), is a protein that in humans is encoded by the IRF8 gene. [5] [6] [7] IRF8 is a transcription factor that plays critical roles in the regulation of lineage commitment and in myeloid cell maturation including the decision for a common myeloid progenitor (CMP) to differentiate into a monocyte precursor cell.

Contents

Function

Interferon Consensus Sequence-binding protein (ICSBP) is a transcription factor of the interferon regulatory factor (IRF) family. Proteins of this family are composed of a conserved DNA-binding domain in the N-terminal region and a divergent C-terminal region that serves as the regulatory domain. The IRF family proteins bind to the IFN-stimulated response element (ISRE) and regulate expression of genes stimulated by type I IFNs, namely IFN-α and IFN-β. IRF family proteins also control expression of IFN-α and IFN-β-regulated genes that are induced by viral infection. [5]

Knockout studies

IFN-producing cells (mIPCs) were absent in all lymphoid organs from ICSBP knockout (KO) mice, as revealed by lack of CD11clowB220+Ly6C+CD11b cells. In parallel, CD11c+ cells isolated from ICSBP KO spleens were unable to produce type I IFNs in response to viral stimulation. ICSBP KO mice also displayed a marked reduction of the DC subset expressing the CD8alpha marker (CD8alpha+ DCs) in spleen, lymph nodes, and thymus. Moreover, ICSBP-deficient CD8alpha+ DCs exhibited a markedly impaired phenotype when compared with WT DCs. They expressed very low levels of costimulatory molecules (intercellular adhesion molecule ICAM1, CD40, CD80, CD86) and of the T cell area-homing chemokine receptor CCR7. [8]

Clinical significance

In myeloid cells, IRF8 regulates the expression of Bax and Fas to regulate apoptosis. [9] In chronic myelogenous leukemia (CML), IRF8 regulates acid ceramidase to mediate CML apoptosis. [10]

IRF8 is highly expressed in myeloid cells and was originally identified in as a critical lineage-specific transcription factor for myeloid cell differentiation, [11] recent studies, however, have shown that IRF8 is also constitutively expressed in non-hematopoietic cancer cells, albeit at a lower level. Furthermore, IRF8 can also be up-regulated by IFN-γ in non-hemotopoietic cells. IRF8 mediates the expression of Fas, Bax, FLIP, Jak1 and STAT1 to mediate apoptosis in non-hemotopoietic cancer cells. [12] [13] [14]

Analysis of human cancer genomics database revealed that IRF8 is not significantly focally amplified across the entire dataset of 3131 tumors, but is significantly focally deleted across the entire dataset of 3131 tumors, suggesting that IRF8 is potentially a tumor suppressor in humans. [15] Molecular analysis indicated that the IRF8 gene promoter is hypermethylated in human colon carcinoma cells, [14] [16] suggesting that these cells might use DNA methylation to silence IRF8 expression to advance the disease.

Interactions

IRF8 has been shown to interact with IRF1 [17] [18] and COPS2. [19]

See also

Related Research Articles

<span class="mw-page-title-main">EP300</span> Protein-coding gene in the species Homo sapiens

Histone acetyltransferase p300 also known as p300 HAT or E1A-associated protein p300 also known as EP300 or p300 is an enzyme that, in humans, is encoded by the EP300 gene. It functions as histone acetyltransferase that regulates transcription of genes via chromatin remodeling by allowing histone proteins to wrap DNA less tightly. This enzyme plays an essential role in regulating cell growth and division, prompting cells to mature and assume specialized functions (differentiate), and preventing the growth of cancerous tumors. The p300 protein appears to be critical for normal development before and after birth.

<span class="mw-page-title-main">Interferon regulatory factors</span> Protein family

Interferon regulatory factors (IRF) are proteins which regulate transcription of interferons. Interferon regulatory factors contain a conserved N-terminal region of about 120 amino acids, which folds into a structure that binds specifically to the IRF-element (IRF-E) motifs, which is located upstream of the interferon genes. Some viruses have evolved defense mechanisms that regulate and interfere with IRF functions to escape the host immune system. For instance, the remaining parts of the interferon regulatory factor sequence vary depending on the precise function of the protein. The Kaposi sarcoma herpesvirus, KSHV, is a cancer virus that encodes four different IRF-like genes; including vIRF1, which is a transforming oncoprotein that inhibits type 1 interferon activity. In addition, the expression of IRF genes is under epigenetic regulation by promoter DNA methylation.

<span class="mw-page-title-main">PCAF</span> Protein-coding gene in the species Homo sapiens

P300/CBP-associated factor (PCAF), also known as K(lysine) acetyltransferase 2B (KAT2B), is a human gene and transcriptional coactivator associated with p53.

<span class="mw-page-title-main">IRF3</span> Protein-coding gene in the species Homo sapiens

Interferon regulatory factor 3, also known as IRF3, is an interferon regulatory factor.

<span class="mw-page-title-main">MCM2</span> Protein-coding gene in the species Homo sapiens

DNA replication licensing factor MCM2 is a protein that in humans is encoded by the MCM2 gene.

<span class="mw-page-title-main">ISG15</span> Protein-coding gene in the species Homo sapiens

Interferon-stimulated gene 15 (ISG15) is a 17 kDA secreted protein that in humans is encoded by the ISG15 gene. ISG15 is induced by type I interferon (IFN) and serves many functions, acting both as an extracellular cytokine and an intracellular protein modifier. The precise functions are diverse and vary among species but include potentiation of Interferon gamma (IFN-II) production in lymphocytes, ubiquitin-like conjugation to newly-synthesized proteins and negative regulation of the IFN-I response.

<span class="mw-page-title-main">IFNAR2</span> Protein-coding gene in the species Homo sapiens

Interferon-alpha/beta receptor beta chain is a protein that in humans is encoded by the IFNAR2 gene.

<span class="mw-page-title-main">IRF2</span> Protein-coding gene in the species Homo sapiens

Interferon regulatory factor 2 is a protein that in humans is encoded by the IRF2 gene.

<span class="mw-page-title-main">IRF7</span> Protein-coding gene in the species Homo sapiens

Interferon regulatory factor 7, also known as IRF7, is a member of the interferon regulatory factor family of transcription factors.

<span class="mw-page-title-main">IRF1</span> Protein-coding gene in the species Homo sapiens

Interferon regulatory factor 1 is a protein that in humans is encoded by the IRF1 gene.

<span class="mw-page-title-main">CTBP1</span> Protein-coding gene in the species Homo sapiens

C-terminal-binding protein 1 also known as CtBP1 is a protein that in humans is encoded by the CTBP1 gene. CtBP1 is one of two CtBP proteins, the other protein being CtBP2.

<span class="mw-page-title-main">ID3 (gene)</span> Protein-coding gene in the species Homo sapiens

DNA-binding protein inhibitor ID-3 is a protein that in humans is encoded by the ID3 gene.

<span class="mw-page-title-main">IKBKE</span> Protein-coding gene in the species Homo sapiens

Inhibitor of nuclear factor kappa-B kinase subunit epsilon also known as I-kappa-B kinase epsilon or IKK-epsilon is an enzyme that in humans is encoded by the IKBKE gene.

<span class="mw-page-title-main">IFI16</span> Protein-coding gene in the species Homo sapiens

Gamma-interferon-inducible protein Ifi-16 (Ifi-16) also known as interferon-inducible myeloid differentiation transcriptional activator is a protein that in humans is encoded by the IFI16 gene.

<span class="mw-page-title-main">IRF4</span> Protein-coding gene in the species Homo sapiens

Interferon regulatory factor 4 (IRF4) also known as MUM1 is a protein that in humans is encoded by the IRF4 gene,. IRF4 functions as a key regulatory transcription factor in the development of human immune cells. The expression of IRF4 is essential for the differentiation of T lymphocytes and B lymphocytes as well as certain myeloid cells. Dysregulation of the IRF4 gene can result in IRF4 functioning either as an oncogene or a tumor-suppressor, depending on the context of the modification.

<span class="mw-page-title-main">COPS2</span> Protein-coding gene in humans

COP9 signalosome complex subunit 2 is a protein that in humans is encoded by the COPS2 gene. It encodes a subunit of the COP9 signalosome.

<span class="mw-page-title-main">IRF9</span> Protein-coding gene in the species Homo sapiens

Interferon regulatory factor 9 is a protein that in humans is encoded by the IRF9 gene, previously known as ISGF3G.

<span class="mw-page-title-main">IRF5</span> Protein-coding gene in the species Homo sapiens

Interferon regulatory factor 5 is a protein that in humans is encoded by the IRF5 gene. The IRF family is a group of transcription factors that are involved in signaling for virus responses in mammals along with regulation of certain cellular functions.

<span class="mw-page-title-main">NFYC</span> Protein-coding gene in the species Homo sapiens

Nuclear transcription factor Y subunit gamma is a protein that in humans is encoded by the NFYC gene.

<span class="mw-page-title-main">N-myc-interactor</span> Protein-coding gene in the species Homo sapiens

N-myc-interactor also known as N-myc and STAT interactor is a protein that in humans is encoded by the NMI gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000140968 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000041515 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: IRF8 interferon regulatory factor 8".
  6. Weisz A, Marx P, Sharf R, Appella E, Driggers PH, Ozato K, Levi BZ (December 1992). "Human interferon consensus sequence binding protein is a negative regulator of enhancer elements common to interferon-inducible genes". J. Biol. Chem. 267 (35): 25589–96. doi: 10.1016/S0021-9258(19)74081-2 . PMID   1460054.[ permanent dead link ]
  7. Nehyba J, Hrdlicková R, Burnside J, Bose HR (June 2002). "A novel interferon regulatory factor (IRF), IRF-10, has a unique role in immune defense and is induced by the v-Rel oncoprotein". Mol. Cell. Biol. 22 (11): 3942–57. doi:10.1128/MCB.22.11.3942-3957.2002. PMC   133824 . PMID   11997525.
  8. Tamura T, Ozato K (January 2002). "ICSBP/IRF-8: its regulatory roles in the development of myeloid cells". J. Interferon Cytokine Res. 22 (1): 145–52. doi:10.1089/107999002753452755. PMID   11846985.
  9. Yang J, Hu X, Zimmerman M, Torres CM, Yang D, Smith SB, Liu K (November 2011). "Cutting edge: IRF8 regulates Bax transcription in vivo in primary myeloid cells". J. Immunol. 187 (9): 4426–30. doi:10.4049/jimmunol.1101034. PMC   3197864 . PMID   21949018.
  10. Hu X, Yang D, Zimmerman M, Liu F, Yang J, Kannan S, Burchert A, Szulc Z, Bielawska A, Ozato K, Bhalla K, Liu K (April 2011). "IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia". Cancer Res. 71 (8): 2882–91. doi:10.1158/0008-5472.CAN-10-2493. PMC   3078194 . PMID   21487040.
  11. Holtschke T, Löhler J, Kanno Y, Fehr T, Giese N, Rosenbauer F, Lou J, Knobeloch KP, Gabriele L, Waring JF, Bachmann MF, Zinkernagel RM, Morse HC, Ozato K, Horak I (October 1996). "Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene". Cell. 87 (2): 307–17. doi: 10.1016/S0092-8674(00)81348-3 . PMID   8861914. S2CID   18065448.
  12. Yang D, Wang S, Brooks C, Dong Z, Schoenlein PV, Kumar V, Ouyang X, Xiong H, Lahat G, Hayes-Jordan A, Lazar A, Pollock R, Lev D, Liu K (February 2009). "IFN regulatory factor 8 sensitizes soft tissue sarcoma cells to death receptor-initiated apoptosis via repression of FLICE-like protein expression". Cancer Res. 69 (3): 1080–8. doi:10.1158/0008-5472.CAN-08-2520. PMC   2633427 . PMID   19155307.
  13. Yang D, Thangaraju M, Browning DD, Dong Z, Korchin B, Lev DC, Ganapathy V, Liu K (October 2007). "IFN regulatory factor 8 mediates apoptosis in nonhemopoietic tumor cells via regulation of Fas expression". J. Immunol. 179 (7): 4775–82. doi: 10.4049/jimmunol.179.7.4775 . PMID   17878376.
  14. 1 2 Yang D, Thangaraju M, Greeneltch K, Browning DD, Schoenlein PV, Tamura T, Ozato K, Ganapathy V, Abrams SI, Liu K (April 2007). "Repression of IFN regulatory factor 8 by DNA methylation is a molecular determinant of apoptotic resistance and metastatic phenotype in metastatic tumor cells". Cancer Res. 67 (7): 3301–9. doi:10.1158/0008-5472.CAN-06-4068. PMID   17409439.
  15. "Tumorscape". The Broad Institute. Archived from the original on 2012-04-14. Retrieved 2012-07-05.
  16. McGough JM, Yang D, Huang S, Georgi D, Hewitt SM, Röcken C, Tänzer M, Ebert MP, Liu K (December 2008). "DNA methylation represses IFN-gamma-induced and signal transducer and activator of transcription 1-mediated IFN regulatory factor 8 activation in colon carcinoma cells". Mol. Cancer Res. 6 (12): 1841–51. doi:10.1158/1541-7786.MCR-08-0280. PMC   2605678 . PMID   19074829.
  17. Schaper F, Kirchhoff S, Posern G, Köster M, Oumard A, Sharf R, Levi BZ, Hauser H (October 1998). "Functional domains of interferon regulatory factor I (IRF-1)". Biochem. J. 335 (1): 147–57. doi:10.1042/bj3350147. PMC   1219763 . PMID   9742224.
  18. Sharf R, Azriel A, Lejbkowicz F, Winograd SS, Ehrlich R, Levi BZ (June 1995). "Functional domain analysis of interferon consensus sequence binding protein (ICSBP) and its association with interferon regulatory factors". J. Biol. Chem. 270 (22): 13063–9. doi: 10.1074/jbc.270.22.13063 . PMID   7768900.
  19. Cohen H, Azriel A, Cohen T, Meraro D, Hashmueli S, Bech-Otschir D, Kraft R, Dubiel W, Levi BZ (December 2000). "Interaction between interferon consensus sequence-binding protein and COP9/signalosome subunit CSN2 (Trip15). A possible link between interferon regulatory factor signaling and the COP9/signalosome". J. Biol. Chem. 275 (50): 39081–9. doi: 10.1074/jbc.M004900200 . PMID   10991940.

Illustrations

IRF8 in host response.png

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.