ARID1B

Last updated
ARID1B
Protein ARID1B PDB 2cxy.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases ARID1B , 6A3-5, BAF250B, BRIGHT, DAN15, ELD/OSA1, MRD12, OSA2, P250R, CSS1, AT-rich interaction domain 1B, SMARCF2
External IDs OMIM: 614556 MGI: 1926129 HomoloGene: 32344 GeneCards: ARID1B
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_017519
NM_001363725
NM_001371656
NM_001374820
NM_001374828

Contents

NM_001085355

RefSeq (protein)

NP_059989
NP_001350654
NP_001358585
NP_001361749
NP_001361757

NP_001078824

Location (UCSC) Chr 6: 156.78 – 157.21 Mb Chr 17: 5.04 – 5.4 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

AT-rich interactive domain-containing protein 1B is a protein that in humans is encoded by the ARID1B gene. [5] ARID1B is a component of the human SWI/SNF chromatin remodeling complex.

Clinical significance

Germline mutations in ARID1B are associated with Coffin–Siris syndrome. [6] [7] Somatic mutations in ARID1B are associated with several cancer subtypes, suggesting that it is a tumor suppressor gene. [8] [9] [10] [11]

Interactions

ARID1B has been shown to interact with SMARCA4 [12] [13] and SMARCA2. [13]

Related Research Articles

RSC is a member of the ATP-dependent chromatin remodeler family. The activity of the RSC complex allows for chromatin to be remodeled by altering the structure of the nucleosome.

<span class="mw-page-title-main">SWI/SNF</span> Subfamily of ATP-dependent chromatin remodeling complexes

In molecular biology, SWI/SNF, is a subfamily of ATP-dependent chromatin remodeling complexes, which is found in eukaryotes. In other words, it is a group of proteins that associate to remodel the way DNA is packaged. This complex is composed of several proteins – products of the SWI and SNF genes, as well as other polypeptides. It possesses a DNA-stimulated ATPase activity that can destabilize histone-DNA interactions in reconstituted nucleosomes in an ATP-dependent manner, though the exact nature of this structural change is unknown. The SWI/SNF subfamily provides crucial nucleosome rearrangement, which is seen as ejection and/or sliding. The movement of nucleosomes provides easier access to the chromatin, allowing genes to be activated or repressed.

Chromatin remodeling is the dynamic modification of chromatin architecture to allow access of condensed genomic DNA to the regulatory transcription machinery proteins, and thereby control gene expression. Such remodeling is principally carried out by 1) covalent histone modifications by specific enzymes, e.g., histone acetyltransferases (HATs), deacetylases, methyltransferases, and kinases, and 2) ATP-dependent chromatin remodeling complexes which either move, eject or restructure nucleosomes. Besides actively regulating gene expression, dynamic remodeling of chromatin imparts an epigenetic regulatory role in several key biological processes, egg cells DNA replication and repair; apoptosis; chromosome segregation as well as development and pluripotency. Aberrations in chromatin remodeling proteins are found to be associated with human diseases, including cancer. Targeting chromatin remodeling pathways is currently evolving as a major therapeutic strategy in the treatment of several cancers.

<span class="mw-page-title-main">SMARCA4</span> Protein-coding gene in the species Homo sapiens

Transcription activator BRG1 also known as ATP-dependent chromatin remodeler SMARCA4 is a protein that in humans is encoded by the SMARCA4 gene.

<span class="mw-page-title-main">SMARCB1</span> Protein-coding gene in the species Homo sapiens

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 is a protein that in humans is encoded by the SMARCB1 gene.

<span class="mw-page-title-main">SMARCA2</span> Protein-coding gene in the species Homo sapiens

Probable global transcription activator SNF2L2 is a protein that in humans is encoded by the SMARCA2 gene.

<span class="mw-page-title-main">ACTL6A</span> Protein-coding gene in the species Homo sapiens

Actin-like protein 6A is a protein that in humans is encoded by the ACTL6A gene.

<span class="mw-page-title-main">ARID1A</span> Protein-coding gene in humans

AT-rich interactive domain-containing protein 1A is a protein that in humans is encoded by the ARID1A gene.

<span class="mw-page-title-main">SMARCC1</span> Protein-coding gene in the species Homo sapiens

SWI/SNF complex subunit SMARCC1 is a protein that in humans is encoded by the SMARCC1 gene.

<span class="mw-page-title-main">SMARCE1</span> Protein-coding gene in the species Homo sapiens

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily E member 1 is a protein that in humans is encoded by the SMARCE1 gene.

<span class="mw-page-title-main">SMARCC2</span> Protein-coding gene in the species Homo sapiens

SWI/SNF complex subunit SMARCC2 is a protein that in humans is encoded by the SMARCC2 gene.

<span class="mw-page-title-main">SMARCD1</span> Protein-coding gene in the species Homo sapiens

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 1 is a protein that in humans is encoded by the SMARCD1 gene.

<span class="mw-page-title-main">PBRM1</span> Protein-coding gene in the species Homo sapiens

Protein polybromo-1 (PB1) also known as BRG1-associated factor 180 (BAF180) is a protein that in humans is encoded by the PBRM1 gene.

<span class="mw-page-title-main">SRCAP</span> Protein-coding gene in the species Homo sapiens

Helicase SRCAP is an enzyme that in humans is encoded by the SRCAP gene.

<span class="mw-page-title-main">ARID2</span> Protein-coding gene in humans

AT-rich interactive domain-containing protein 2 (ARID2) is a protein that in humans is encoded by the ARID2 gene.

<span class="mw-page-title-main">ING3</span> Protein-coding gene in the species Homo sapiens

Inhibitor of growth protein 3 is a protein that in humans is encoded by the ING3 gene.

<span class="mw-page-title-main">SMARCA1</span> Protein-coding gene in the species Homo sapiens

Probable global transcription activator SNF2L1 is a protein that in humans is encoded by the SMARCA1 gene.

<span class="mw-page-title-main">SMC6</span> Protein-coding gene in the species Homo sapiens

Structural maintenance of chromosomes protein 6 is a protein that in humans is encoded by the SMC6 gene.

<span class="mw-page-title-main">ACTL6B</span> Protein-coding gene in the species Homo sapiens

Actin-like protein 6B is a protein that in humans is encoded by the ACTL6B gene.

<span class="mw-page-title-main">SMARCD2</span> Protein-coding gene in the species Homo sapiens

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 2 is a protein that in humans is encoded by the SMARCD2 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000049618 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000069729 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: ARID1B AT rich interactive domain 1B (SWI1-like)".
  6. Tsurusaki Y, Okamoto N, Ohashi H, Kosho T, Imai Y, Hibi-Ko Y, Kaname T, Naritomi K, Kawame H, Wakui K, Fukushima Y, Homma T, Kato M, Hiraki Y, Yamagata T, Yano S, Mizuno S, Sakazume S, Ishii T, Nagai T, Shiina M, Ogata K, Ohta T, Niikawa N, Miyatake S, Okada I, Mizuguchi T, Doi H, Saitsu H, Miyake N, Matsumoto N (April 2012). "Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome". Nat. Genet. 44 (4): 376–8. doi:10.1038/ng.2219. PMID   22426308. S2CID   205345340.
  7. Santen GW, Aten E, Sun Y, Almomani R, Gilissen C, Nielsen M, Kant SG, Snoeck IN, Peeters EA, Hilhorst-Hofstee Y, Wessels MW, den Hollander NS, Ruivenkamp CA, van Ommen GJ, Breuning MH, den Dunnen JT, van Haeringen A, Kriek M (April 2012). "Mutations in SWI/SNF chromatin remodeling complex gene ARID1B cause Coffin-Siris syndrome". Nat. Genet. 44 (4): 379–80. doi:10.1038/ng.2217. PMID   22426309. S2CID   205345323.
  8. Shain AH, Pollack JR (2013). "The spectrum of SWI/SNF mutations, ubiquitous in human cancers". PLOS ONE. 8 (1): e55119. Bibcode:2013PLoSO...855119S. doi: 10.1371/journal.pone.0055119 . PMC   3552954 . PMID   23355908.
  9. Sausen M, Leary RJ, Jones S, Wu J, Reynolds CP, Liu X, Blackford A, Parmigiani G, Diaz LA, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE, Hogarty MD (January 2013). "Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma". Nat. Genet. 45 (1): 12–7. doi:10.1038/ng.2493. PMC   3557959 . PMID   23202128.
  10. Shain AH, Giacomini CP, Matsukuma K, Karikari CA, Bashyam MD, Hidalgo M, Maitra A, Pollack JR (January 2012). "Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer". Proc. Natl. Acad. Sci. U.S.A. 109 (5): E252–9. doi: 10.1073/pnas.1114817109 . PMC   3277150 . PMID   22233809.
  11. Fujimoto A, Totoki Y, Abe T, Boroevich KA, Hosoda F, Nguyen HH, Aoki M, Hosono N, Kubo M, Miya F, Arai Y, Takahashi H, Shirakihara T, Nagasaki M, Shibuya T, Nakano K, Watanabe-Makino K, Tanaka H, Nakamura H, Kusuda J, Ojima H, Shimada K, Okusaka T, Ueno M, Shigekawa Y, Kawakami Y, Arihiro K, Ohdan H, Gotoh K, Ishikawa O, Ariizumi S, Yamamoto M, Yamada T, Chayama K, Kosuge T, Yamaue H, Kamatani N, Miyano S, Nakagama H, Nakamura Y, Tsunoda T, Shibata T, Nakagawa H (July 2012). "Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators". Nat. Genet. 44 (7): 760–4. doi:10.1038/ng.2291. PMID   22634756. S2CID   54585617.
  12. Hurlstone AF, Olave IA, Barker N, van Noort M, Clevers H (May 2002). "Cloning and characterization of hELD/OSA1, a novel BRG1 interacting protein". Biochem. J. 364 (Pt 1): 255–64. doi:10.1042/bj3640255. PMC   1222568 . PMID   11988099.
  13. 1 2 Inoue H, Furukawa T, Giannakopoulos S, Zhou S, King DS, Tanese N (November 2002). "Largest subunits of the human SWI/SNF chromatin-remodeling complex promote transcriptional activation by steroid hormone receptors". J. Biol. Chem. 277 (44): 41674–85. doi: 10.1074/jbc.M205961200 . PMID   12200431.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.